• Title/Summary/Keyword: Submerged rubble-mound breakwater

Search Result 13, Processing Time 0.02 seconds

Influence of Submerged Breakwater in front of Rubble Mound Breakwater (경사식 방파제의 전면에 설치된 수중방파제의 영향에 관한 연구)

  • Min, Hyun-Seong;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.217-220
    • /
    • 2008
  • The reflection coefficients and the run-up heights affected by submerged structures are studied by using the numerical and the laboratory experimental methods. The three-point method is chosen to calculate the reflection coefficients in both the experimental and the numerical methods. The results of numerical simulations are shown a good agreement with laboratory measurements. The reflection coefficients increase and the run-up heights decrease when the rubble mound breakwater is defended by low-crested structures.

  • PDF

Numerical Simulation for Deformation Characteristics of Artificial Reef (인공리프 제체의 변형특성에 관한 수치시뮬레이션)

  • Yoon, Seong-Jin;Park, Young-Suk;Kim, Kyu-Han;Pyun, Chong-Kun
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.18-24
    • /
    • 2010
  • Submerged rubble structures include artificial reef and the mound part of the rubble mound breakwater. Artificial reef is a type of the submerged wave absorbing structure installed in a coastal zone to prevent beach erosion and designed to initially reduce the energy of incoming waves so that its run-up height and overtopping quantity can be decreased. In order to ascertain the stability of such submerged rubble structures, minimum weight of the rubble has to be calculated first from the incoming wave height using Hudson's formula or Brebner-Donnelly formula. Based on the calculated minimum weight, a model is built for use in a hydraulic model test carried out to check its stability. The foregoing two formulas used to calculate the minimum weight are empirically derived formulas based on the result of the tests on the rubble mound breakwater and it is, therefore, difficult for us to apply them directly in the calculation of the minimum weight of the submerged structures. Accordingly, this study comes up with a numerical simulation method capable of deformation analysis for rubble structures. This study also tries to identify the deformation mechanism of the submerged rubble structures using the numerical simulation. The method researched through this study will be sufficient for use for usual preparations of the design guidelines for submerged rubble structures.

Wave Transformation of a Rubble-Mound Breakwater (사석방파제에 의한 파랑변형에 관한 연구)

  • Kang, I. S.;Kwak, K. S.;Kim, D. S.;Yang, Y. M.
    • Journal of Korean Port Research
    • /
    • v.8 no.2
    • /
    • pp.57-65
    • /
    • 1994
  • A theoretical formulation is performed to investigate the wave reflection and transmission ratios by a submerged multi-layered rubble-mound breakwater. This theory, which is based on the linear boundary integral method, can be extended to the multi-layered breakwater with arbitrary cross section. In the theoretical analysis evanescent mode wave is not considered, since fictitious open boundaries are put on the places far from the structure. Therefore the mathematical presentation may be simpler, and computational time shorter. The validity of obtained numerical results is demonstrated by comparing with ones of impermeable and permeable breakwaters. Comparison shows resonable agreement. On the basis of these verifications this theory is applied to the one and two-layered submerged rubble-mound breakwater with trapezoidal type.

  • PDF

Estimation on the Wave Transmission and Stability/Function Characteristics of the Submerged Rubble-Mound Breakwater (수중 잠제구조물의 파랑 전달율과 안정성 및 기능성 평가)

  • KIM Yong Woo;YOON Han Sam;RYU Cheong Ro;SOHN Byung Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.5
    • /
    • pp.528-534
    • /
    • 2003
  • The 2-D hydraulic experimental results for the submerged rubble-mound structure, we have been concerned with the slability/function characteristics of the structures by the effects of wave force, scour/deposition at the toe and the wave transmission ratio at the lee-side sea. So, to investigate the variation characteristics of the wave transmission ratio which depended on a geometrical structure of the submerged breakwater profiles, the critical conditions for the depth of submergence and crest width were obviously presented. In summary, the results lead us to the conclusion that the wave control capabilities of submerged breakwaters by the variation of the submergence depth is higher than about 4 times the degree at the efficiency than the that of crest width. The destruction of the covering block at the crest generated at the region which was located between the maximum and minimum damage curve, and it's maximum damage/failure station from the toe of the structure was $0.2\;L_s.$ As the wave transmission coefficient and the slope of the structure increase, the damage/failure ratio and the maximum scour depth at the toe was extended, respectively. When the maximum scour depth happened, the destruction of the covering block which was located at the toe generated at the front of the submerged rubble-mound breakwater. Finally, it was found from the results that the optimization of the structure may be obtained by the efficient decision of the submergence depth and crest width in the permissible range of the wave transmission ratio.

Numerical analysis on Deformation of Seabed Structures with various size materials by DEM

  • Kim, Mi-Kum;Kim, Chang-Je
    • Journal of Navigation and Port Research
    • /
    • v.31 no.7
    • /
    • pp.589-595
    • /
    • 2007
  • In the majority of previous studies on deformation of seabed structures using DEM, elements of structures have been assumed that it is composed with uniform materials or received fixed wave force, despite that actual submerged structures are composed with various size materials and influenced by complicated fluid field. The goal of this study is to develop a new model for analysis of seabed structure deformation using discontinuous structures composed with various size materials. As the first phase, a model using DEM and VOF, which can compute the deformation of submerged structures composed with various size materials, such as rubble mound structures, is proposed. A model test is carried out and then the validity of the model is discussed.

Numerical Analysis on Deformation of Submerged Structures using 2-Dimensional VOF-DEM Model

  • Kim, Mi-Kum;Kim, Chang-Je
    • Journal of Navigation and Port Research
    • /
    • v.31 no.9
    • /
    • pp.785-791
    • /
    • 2007
  • In this paper we proposed a model that the deformation of the submerged rubble mound breakwaters composed with materials of various size, induced by wave action, can be computed. The water particle kinematics by waves in porous mound structure are computed by CADMAS-SURF, then the deformation of structure is computed using DEM module. To investigate the interaction of wave and sectional deformation of structures, analysis is accomplished by two steps. Analysis at the first step is executed with incipient mound. And analysis at the second step is executed with deformed mound by wave action. Furthermore, behaviors of materials are influenced by various properties such as the contact stiffness and the friction angle. Therefore, in order to present the behavior of the element caused by various properties, computations are accomplished with random coefficients by using the Monte Carlo simulation.

Experimental Study on Reduction of Rup-Up Height of Sloping Breakwater due to Submerged Structure (수중 구조물에 의한 경사식 방파제의 처오름 감소에 관한 실험적 연구)

  • Park, Seung-Hyun;Lee, Seung-Oh;Jung, Tae-Hwa;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.187-197
    • /
    • 2007
  • Experimental study for a submerged structure was conducted to protect coastal structures and shorelines. The rectangular submerged structure known as the most efficient shape among various submerged structures in the literature was fabricated at the nose of a rubble mound breakwater. The reflection coefficients and the run-up heights along the slope of a breakwater were measured for different significant wave heights and periods. It is found in this study that the reflection coefficient is affected more relatively by the significant wave period than the significant wave height and the run-up heights are reduced approximately 28% in terms of ${^{RU}}_{2%}$ and 26% in terms of ${^{RU}}_{33%}$, respectively, by the installation of a submerged structure inducing the interception and breaking of waves.

Hydraulic experiments on change of intervals between submerged structure and breakwater (수중구조물과 방파제 간의 거리변화에 따른 수리 특성 실험)

  • Park, Seung-Hyun;Park, Jin-Ho;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.168-171
    • /
    • 2007
  • The stability of a typical rubble mound breakwater defenced by a submerged structure is investigated using hydraulic experiments. Incident irregular waves are obtained from the Bretschneider-Mistuyasu spectrum. Experiments are carried out for different spacings between two breakwaters (X/d=2-3) and for different relative widths (B/h=0.7-3.0) of the submerged structure. It is observed that a submerged structure of (B/h) of 0.7-3.0 constructed at a seaward distance (X/d) of 2-3 breaks all the incident waves and dissipates energy and breakwater.

  • PDF

Influence of a Structure by the Submerged Breakwater and the Porous Wave Absorber (수중방파제와 다공성 소파장치가 구조물에 미치는 영향)

  • Park, Jin-Ho;Jung, Tae-Hwa;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.225-228
    • /
    • 2008
  • There are many studies about submerged structures or porous wave absorbers to decrease damage of coast and structures. Submerged structures and porous wave absorber are decreasing energy of incoming wave by reflecting or dissipation with changing depth or with porous rubble mound. This study addresses the reflection and transmission of long wave from a trapezoidal breakwater and a vertical porous wave absorber at the same time. A systematic shape transfer is derived to determine wave reflection and transmission. And periodic solutions are matched at the slope and the front face of the absorber by assuming continuity of pressure and mass. The transmission coefficient is determined as a function of parameters describing the incoming waves, transmitting waves through the trapezoidal breakwater and the absorber characteristics.

  • PDF