• Title/Summary/Keyword: Sublimation

Search Result 408, Processing Time 0.026 seconds

The Vacancies-in-Solid Model Applied to Sublimation Pressure, Enthalpies and Entropies of Sublimation, and Enthalpies and Entropies of Solid Krypton and Xenon

  • Ko, Seuk-Beum;Kim, Wan-Kyue
    • Bulletin of the Korean Chemical Society
    • /
    • v.2 no.1
    • /
    • pp.17-24
    • /
    • 1981
  • Thermodynamic properties such as sublimation pressures, enthalpies and entropies of sublimation, enthalpies and entropies of solid krypton and xenon are calculated from $0{\circ}K$ to the triple point, using the vacancies-in-solid model. The Mie-Lennard-Jones 12,6 potential in uniform potential field is used. The results are compared with the calorimetric and sublimation pressure values, and are in a good agreement with the available calorimetric and sublimation pressure values.

Reduction of Vacuum Sublimation by Ion Beam Treatment for e-beam Deposited SiC Films

  • Kim, Jaeun;Hong, Sungdeok;Kim, Yongwan;Park, Jaewon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.138.1-138.1
    • /
    • 2013
  • We present the low temperature (${\leq}1,000^{\circ}C$) vacuum sublimation behavior of an e-beam evaporative deposited on a SiC film and a method to reduce the vacuum sublimation through an ion beam process. The density of the SiC film deposited using the e-beam evaporation method was ~60% of the density of the bulk source material. We found that the sublimation became appreciable above ${\sim}750^{\circ}C$ under $1.5{\times}10^{-5}$ torr pressure and the sublimation rate increased with an increase in temperature, reaching ~70 nm/h at $950^{\circ}C$ when the coated sample was heated for 5 h. When the film was irradiated with 70 keV N+ ions prior to heating, the sublimation rate decreased to ~23 nm/h at a fluence of $1{\times}10^{17}\;ions/cm^2$. However, a further increase in fluence beyond this value or an extended heating period did not change (decrease or increase) the sublimation rate any further.

  • PDF

Design Method for Sublimation Drying System for Prevention of Stiction (점착방지를 위한 승화건조기의 설계방법)

  • Kim, Jong-Pal;Lee, Sang-Woo;Chun, Kuk-Jin;Cho, Dong-Il
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2550-2552
    • /
    • 1998
  • The stiction phenomena poses a design constraint in surface micromachining by reducing the releasable size of the microstructure. This problem occurs during the fabrication process of surface micromachined microstructures during the wet etch of sacrificial layers. For the prevention of the sticking problem, the microsctructure is released by sublimation after the substitution of the sacrificial layer etchant with a sublimation material heated above its melting temperature. In the sublimation drying method, the sublimation materials such as p-dichlorobenzene, t-butyl alcohol, and cyclohexane are used. In this paper, a method for designing a sublimation drying system is developed, and its performance is experimentally evaluated.

  • PDF

The Sublimation Pressure and Standard Enthalpy of Sublimation of Bismuth Triiodide ($BiI_3$에 대한 승화압과 승화 표준 엔탈피)

  • 김준학
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.7
    • /
    • pp.943-951
    • /
    • 1990
  • Steady-state sublimation vapour pressures of anhydrous bismuth triiodide have been measured by the continuous gravimetric Kundsen-effusion method from 430.0 to 558.9 K and equilibrium sublimation pressures were obtained from the steady-state data. Condensation coefficients and their temperature dependence have been derived from the effusiion measurement. Condensation coefficients ranged from 0.159 to 0.048(475 to 500K), the activation enthalpy and entropy for condensation have been obtained as -93.38kTmol-1 and -212.70JK-1mol-1. The standard sublimation enthalpy changes derived by both second(modified sigma function) and third(average enthalpy method) law methods were 138.261$\pm$0.023, 138.74$\pm$0.002kJmol-1 respectively. The standard sublimation entropy change derived by modified sigma function was 191.98$\pm$0.047 JK-1mol-1. The reliable standard sublimation enthalpy change based on a correlation of ΔgcrHom(298.15K) and ΔgcrSom(298.15K), a recommended p(T) equation has been obtained for BiI3(cr) ; 1g(p/Pa)=-C/(T/K)+5.0711g(T/K)-2.838$\times$10-3(T/K)-7.758$\times$103(K/T)2+1.4519 where p is in Pa, T in Kelvin, ΔgcrHom(298.15K) in kJmol-1 and C=(ΔgcrHom(298.15K)-8.7358)/1.9146$\times$10-2.

  • PDF

A study of the color reproducibility and color fastness of digital textile printing for nylon sublimation transfer (나일론 승화전사 디지털 프린팅의 컬러 재현성 및 견뢰도에 관한 연구)

  • Choi, Gyung-Me;Kim, Ki-Hoon
    • The Research Journal of the Costume Culture
    • /
    • v.26 no.5
    • /
    • pp.754-763
    • /
    • 2018
  • This study examined the color reproducibility and color fastness of digital textile printing for nylon sublimation transfer. After measuring the temperature and time suited to nylon sublimation transfer, the researchers conducted various tests for comparison and analysis including polyester transfer paper on polyester fabric to check dyeing characteristics, color change, sharpness, and the rubbing fastness of the dyeing samples for nylon sublimation transfer. These tests produced the following results. At $185^{\circ}C$ and $187^{\circ}C$, the sublimation transfer dyeing characteristics of nylon were similar to those of polyester and the researchers even observed superior color development in some colors; at a low temperature of $180^{\circ}C$, the sample that was worked on had the lowest level of color development. The examination of color difference (${\Delta}E$), which compared $L^*a^*b^*$ values, showed that the ${\Delta}E$ value of magenta was 10.34, that of yellow was 24.70, and that of black was 15.28. These results highlight the important role of heat treatment temperature and time on color development in nylon sublimation transfer. Concerning sharpness, the samples subjected to higher temperature heat treatment exhibited fewer color spreading phenomena around lines. Thus, dyeing properties and fastness can be enhanced by elongating time at low temperatures and shortening time at high temperatures; however, considering production time constraints as well as the need to produce industrially marketable quantities, the findings of this study suggest that the heat treatment temperature most suitable for nylon sublimation transfer is $187^{\circ}C$ for a duration of 50 seconds.

Prediction of the Drying Time under the Various Operational Conditions using a Sublimation Model (승화 건조모델에 대한 운전방법별 건조시간의 예측)

  • 박노현;배신철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2088-2098
    • /
    • 1993
  • A mathematical model of freeze drying by sublimation was suggested and used to estimate the drying time. Under the various conditions, the drying time of pure water and carrot was numerically calculated for the suggested model. Optimal policies of freeze drying were investigated experimentally in a laboratory freeze dryer. It was found that the shortest drying times could be obtained when the chamber pressure and condenser temperature were kept at their lowest values and the best method of heat transfer for sublimation was the conduction involving radiation. The sublimation drying period was finished when the bottom temperature of material could be reached at near $0^{\circ}C$ from frozen temperature.

Sublimation Pressure and Standard Enthalpy of Bismuth Triiodide by Torsion-Effusion Method (Torsion-Effusion 법에 의한 Bismuth Triiodide의 승화압과 표준 엔탈피)

  • 김준학
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.2
    • /
    • pp.109-118
    • /
    • 1991
  • Steady-state sublimation vapour pressures of anhydrous bismuth triiodide have been measured by the torsion-effusion method from 488.8 to 570.5 K and equilibrium sublimation pressures were obtained from the steady-state data. The standard sublimation enthalpy changes derived by both second(modified sigma function) and third(average enthalpy method) law methods were 159.316${\pm}$0.055, 137.67${\pm}$1.43 kJ$.$mol-1 respectively. The standard sublmation entropy change derived by modified sigma function was 232.88${\pm}$0.10 J$.$K-1$.$mol-1. The reliable standard sublimation enthalpy change based on a correlation of {{{{ { TRIANGLE }`_{cr } ^{g } }} H{{{{ { 0} atop {m } }}(298.15K) and {{{{ { TRIANGLE }`_{cr } ^{g } }} S{{{{ { 0} atop {m } }}(298.15K), a recommended p(T) equation has been obtained for BiI3(cr) ; lg(p/Pa)=-(C$.$K/T)+5.071lg(T/K)-2.838${\times}$10-3(T/K)-7.758${\times}$103(K/T)2+1.4519 where C={{{{{ { TRIANGLE }`_{cr } ^{g } }} H{{{{ { 0} atop {m } }}(298.15K)/0.019146 kJ$.$mol-1}-456.27.

  • PDF

The Design Development for Umbrella by Sublimation Transfer Digital Textile Printing - To Utilize Korean Traditional Images - (승화전사(昇華轉寫) 디지털 프린팅을 활용한 우산디자인 개발 - 한국적 이미지를 활용하여 -)

  • Cho, Moon-Hee
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.12 no.4
    • /
    • pp.207-221
    • /
    • 2010
  • This study aim to suggest how alter the korean traditional image design for umbrellas by sublimation transfer digital textile printing. Umbrellas are highly depend on design and made from polyester fiber which is proper item to utilize sublimation transfer digital textile printing. Sublimation transfer digital textile printing system can use computer system to create the delicate high dense images and one full layout through the hole umbrella. It can create distinctive style of design compare with former screen printing umbrella design. As a result of this study, Korean traditional images were adopted and recreated for umbrellas as the modern practical item. 7 of umbrella designs were developed and sample umbrellas could be produced in short period comparing with screen printing process. Through this study, as green printing process, sublimation transfer digital textile printing will be more applied to manufacture high quality textile products along with design development, thus it is expected as an alternative plan to leads growth of umbrella industries.

  • PDF

Development of a Sublimation Program for Korean Adolescents′ Aggression (한국 청소년의 공격성 순화 프로그램 개발)

  • 김현실
    • Journal of Korean Academy of Nursing
    • /
    • v.34 no.1
    • /
    • pp.81-92
    • /
    • 2004
  • Purpose: The purpose of this study was to identify a path diagram for the influence of family, personality, sexual abuse, drug abuse, coping strategies, and aggressive impulsiveness on aggression, and to develop a sublimation program for Korean adolescent's aggression. Method: Data was collected by self-report questionnaires. Subjects consisted of 2,111 adolescents. A proportional stratified random sampling method was used. The major instrument was the Mental Health Questionnaire for Korean Adolescents, and the Cronbach's Alpha ranged from .54 to .95 for each subscale. Statistical methods were Chi-square, correlation analysis, and path analysis. Results: The strongest contributing variables on aggression were person-related aggressive impulsiveness, antisocial personality, self-injured aggressive impulsiveness, gender, sexual abuse, psychosomatic symptoms II, drug abuse, age, parent-child relationship, alcohol abuse and cognitive avoidance coping strategies in the order named. Also the author developed a multi-systemic sublimation program for Korean adolescents's aggression. The multi-systemic sublimation program involves four domains including adolescents, parents, peers and community, and has several therapeutic sub-programs for each domain. Conclusion: The ecology of human development is composed of multiple, integrated levels of organization, including biological, individual-psychological, social-interpersonal, cultural, and historical levels. Therefore, this multi-systemic sublimation program will prevent and decrease the rate of aggressive behavior among Korean adolescents.

Sublimation and high-temperature stability of SnO2-doped Bi2O3 ionic materials in controlled atmosphere

  • Cheng, Yu-Hung;Chen, Yen-Yu;Wei, Wen-Cheng J.
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.388-393
    • /
    • 2018
  • Sublimation of $Bi_2O_3$-based materials is an important degradation issue for the long-term applications of many electronic devices. A series of $SnO_2$-doped $Bi_2O_3$ materials (SBO), was synthesized, densified, and then tested in air or strong reducing atmosphere. The $SnO_2$-doping effects and sublimation kinetics of the SBO materials were studied by X-ray diffraction (XRD), scanning electron microscope (SEM) and precise mass loss measurement. The results show that formation of $Bi_2Sn_2O_7$ phase greatly retards the mass loss of SBO. The SBO samples show a surface sublimation in an energy of $52.6kJ{\cdot}mol^{-1}$. However, the sublimation is also controlled by surface microstructure as the amount of vaporizing species (the Bi or gaseous Bi-oxides) is more than 0.1 mass%. The evaporation is retarded on the rough surface and the mechanism of surface evaporation is changed to diffusional control.