• 제목/요약/키워드: Subcellular targeting

검색결과 19건 처리시간 0.017초

Evaluation and interpretation of transcriptome data underlying heterogeneous chronic obstructive pulmonary disease

  • Ham, Seokjin;Oh, Yeon-Mok;Roh, Tae-Young
    • Genomics & Informatics
    • /
    • 제17권1호
    • /
    • pp.2.1-2.12
    • /
    • 2019
  • Chronic obstructive pulmonary disease (COPD) is a type of progressive lung disease, featured by airflow obstruction. Recently, a comprehensive analysis of the transcriptome in lung tissue of COPD patients was performed, but the heterogeneity of the sample was not seriously considered in characterizing the mechanistic dysregulation of COPD. Here, we established a new transcriptome analysis pipeline using a deconvolution process to reduce the heterogeneity and clearly identified that these transcriptome data originated from the mild or moderate stage of COPD patients. Differentially expressed or co-expressed genes in the protein interaction subnetworks were linked with mitochondrial dysfunction and the immune response, as expected. Computational protein localization prediction revealed that 19 proteins showing changes in subcellular localization were mostly related to mitochondria, suggesting that mislocalization of mitochondria-targeting proteins plays an important role in COPD pathology. Our extensive evaluation of COPD transcriptome data could provide guidelines for analyzing heterogeneous gene expression profiles and classifying potential candidate genes that are responsible for the pathogenesis of COPD.

Ginsenoside compound K inhibits nuclear factor-kappa B by targeting Annexin A2

  • Wang, Yu-Shi;Zhu, Hongyan;Li, He;Li, Yang;Zhao, Bing;Jin, Ying-Hua
    • Journal of Ginseng Research
    • /
    • 제43권3호
    • /
    • pp.452-459
    • /
    • 2019
  • Background: Ginsenoside compound K(C-K), a major metabolite of ginsenoside, exhibits anticancer activity in various cancer cells and animal models. A cell signaling study has shown that C-K inhibited nuclear factor-kappa B ($NF-{\kappa}B$) pathway in human astroglial cells and liver cancer cells. However, the molecular targets of C-K and the initiating events were not elucidated. Methods: Interaction between C-K and Annexin A2 was determined by molecular docking and thermal shift assay. HepG2 cells were treated with C-K, followed by a luciferase reporter assay for $NF-{\kappa}B$, immunofluorescence imaging for the subcellular localization of Annexin A2 and $NF-{\kappa}B$ p50 subunit, coimmunoprecipitation of Annexin A2 and $NF-{\kappa}B$ p50 subunit, and both cell viability assay and plate clone formation assay to determine the cell viability. Results: Both molecular docking and thermal shift assay positively confirmed the interaction between Annexin A2 and C-K. This interaction prevented the interaction between Annexin A2 and $NF-{\kappa}B$ p50 subunit and their nuclear colocalization, which attenuated the activation of $NF-{\kappa}B$ and the expression of its downstream genes, followed by the activation of caspase 9 and 3. In addition, the overexpression of Annexin A2-K320A, a C-K binding-deficient mutant of Annexin A2, rendered cells to resist C-K treatment, indicating that C-K exerts its cytotoxic activity mainly by targeting Annexin A2. Conclusion: This study for the first time revealed a cellular target of C-K and the molecular mechanism for its anticancer activity.

SERCA2a: a prime target for modulation of cardiac contractility during heart failure

  • Park, Woo Jin;Oh, Jae Gyun
    • BMB Reports
    • /
    • 제46권5호
    • /
    • pp.237-243
    • /
    • 2013
  • Heart failure is one of the leading causes of sudden death in developed countries. While current therapies are mostly aimed at mitigating associated symptoms, novel therapies targeting the subcellular mechanisms underlying heart failure are emerging. Failing hearts are characterized by reduced contractile properties caused by impaired $Ca^{2+}$ cycling between the sarcoplasm and sarcoplasmic reticulum (SR). Sarcoplasmic/endoplasmic reticulum $Ca^{2+}$ ATPase 2a (SERCA2a) mediates $Ca^{2+}$ reuptake into the SR in cardiomyocytes. Of note, the expression level and/or activity of SERCA2a, translating to the quantity of SR $Ca^{2+}$ uptake, are significantly reduced in failing hearts. Normalization of the SERCA2a expression level by gene delivery has been shown to restore hampered cardiac functions and ameliorate associated symptoms in pre-clinical as well as clinical studies. SERCA2a activity can be regulated at multiple levels of a signaling cascade comprised of phospholamban, protein phosphatase 1, inhibitor-1, and $PKC{\alpha}$. SERCA2 activity is also regulated by post-translational modifications including SUMOylation and acetylation. In this review, we will highlight the molecular mechanisms underlying the regulation of SERCA2a activity and the potential therapeutic modalities for the treatment of heart failure.

분자농업의 현황 및 전망 (Current status in molecular farming)

  • 김태금;양문식
    • Journal of Plant Biotechnology
    • /
    • 제37권3호
    • /
    • pp.243-249
    • /
    • 2010
  • Molecular farming is production of pharmaceutically and industrially important proteins in plants. Plants and plant cell culture systems have been used as bio-factory to produce recombinant proteins such as monoclonal antibodies, enzymes, vaccines, hormones, interleukins, commercial enzymes and etc. The terms molecular farming, biofarming, molecular pharming, phytomanufacturing, recombinant or plant-made industrials, planta-pharma, plant bioreactors, plant biofactory, and pharmaceutical gardening are used interchangeably. Molecular farming can provide safe and inexpensive pharmaceutical proteins as well as commercial ones. In spite of several advantages of molecular farming such as safety and inexpensive cost, there are also a couple of drawbacks in the existing technology. One of them is low expression level of target gene in plants, which has been improved by optimizing gene-based codon usage, screening of strong promoters, expression of transcription factors, subcellular targeting of target proteins, chloroplast transformation, and transient expression using viral expression system (magnifection). Some plant-based commercial proteins have already been in markets and more than twenty plant-based pharmaceuticals have been in clinical trials, from that we can expect that several plant-based pharmaceutical proteins will be seen in the markets in the near future.

인간 포미바이러스 인테그라제의 핵위치 신호 (Nuclear Localization Signal of Human Foamy Virus Integrase)

  • 오수아;강승이;한성태;안덕근;신차균
    • 약학회지
    • /
    • 제50권2호
    • /
    • pp.93-98
    • /
    • 2006
  • Human foamy virus (HFV) integrase mediates integration of viral c-DNA into cellular DNA. In this process, HFV prointegration complex (PIC) in which integrase is a key component moves to nuclei of the infected cells and leads to integration of viral DNA to the cellular genome, which is essential in viral life cycle. In general nuclear localization signals (NLS) have been suggested to be involved in localizing retroviral PIC to nuclei, but the mechanisms for nuclear localization of the HFV PIC remains unclear. To functionally identify the NLS of HFV integrase, various subdomains of the protein were expressed as GFP fusions and their subcellular locations were analyzed with confocal laser scanning microscopy. Wild type HFV integrase was karyophilic by targeting the fusion protein to nuclei of the COS-1 and 293T cells. Our results showed that strong NLS of HFV integrase was mapped to the C-terminal regions. In addition the karyophilic properties of N-terminal and central regions are not individually strong enough to direct localization of the fusion proteins to nuclei, but their cooperative activity for nuclear import was confirmed.

Glyco-engineering of Biotherapeutic Proteins in Plants

  • Ko, Kisung;Ahn, Mi-Hyun;Song, Mira;Choo, Young-Kug;Kim, Hyun Soon;Ko, Kinarm;Joung, Hyouk
    • Molecules and Cells
    • /
    • 제25권4호
    • /
    • pp.494-503
    • /
    • 2008
  • Many therapeutic glycoproteins have been successfully generated in plants. Plants have advantages regarding practical and economic concerns, and safety of protein production over other existing systems. However, plants are not ideal expression systems for the production of biopharmaceutical proteins, due to the fact that they are incapable of the authentic human N-glycosylation process. The majority of therapeutic proteins are glycoproteins which harbor N-glycans, which are often essential for their stability, folding, and biological activity. Thus, several glyco-engineering strategies have emerged for the tailor-making of N-glycosylation in plants, including glycoprotein subcellular targeting, the inhibition of plant specific glycosyltranferases, or the addition of human specific glycosyltransferases. This article focuses on plant N-glycosylation structure, glycosylation variation in plant cell, plant expression system of glycoproteins, and impact of glycosylation on immunological function. Furthermore, plant glyco-engineering techniques currently being developed to overcome the limitations of plant expression systems in the production of therapeutic glycoproteins will be discussed in this review.

Mechanisms Underlying Plk1 Polo-Box Domain-Mediated Biological Processes and Their Physiological Significance

  • Lee, Kyung S.;Park, Jung-Eun;Kang, Young Hwi;Kim, Tae-Sung;Bang, Jeong K.
    • Molecules and Cells
    • /
    • 제37권4호
    • /
    • pp.286-294
    • /
    • 2014
  • Mammalian polo-like kinase 1 (Plk1) has been studied intensively as a key regulator of various cell cycle events that are critical for proper M-phase progression. The polobox domain (PBD) present in Plk1's C-terminal noncatalytic region has been shown to play a central role in targeting the N-terminal kinase domain of Plk1 to specific subcellular locations. Subsequent studies reveal that PBD binds to a phosphorylated motif generated by one of the two mechanisms - self-priming by Plk1 itself or non-self-priming by a Pro-directed kinase, such as Cdc2. Here, we comparatively review the differences in the biochemical steps of these mechanisms and discuss their physiological significance. Considering the diverse functions of Plk1 during the cell cycle, a better understanding of how the catalytic activity of Plk1 functions in concert with its cisacting PBD and how this coordinated process is intricately regulated to promote Plk1 functions will be important for providing new insights into different mechanisms underlying various Plk1-mediated biological events that occur at the multiple stages of the cell cycle.

The trinity of ribosome-associated quality control and stress signaling for proteostasis and neuronal physiology

  • Park, Jumin;Park, Jongmin;Lee, Jongbin;Lim, Chunghun
    • BMB Reports
    • /
    • 제54권9호
    • /
    • pp.439-450
    • /
    • 2021
  • Translating ribosomes accompany co-translational regulation of nascent polypeptide chains, including subcellular targeting, protein folding, and covalent modifications. Ribosome-associated quality control (RQC) is a co-translational surveillance mechanism triggered by ribosomal collisions, an indication of atypical translation. The ribosome-associated E3 ligase ZNF598 ubiquitinates small subunit proteins at the stalled ribosomes. A series of RQC factors are then recruited to dissociate and triage aberrant translation intermediates. Regulatory ribosomal stalling may occur on endogenous transcripts for quality gene expression, whereas ribosomal collisions are more globally induced by ribotoxic stressors such as translation inhibitors, ribotoxins, and UV radiation. The latter are sensed by ribosome-associated kinases GCN2 and ZAKα, activating integrated stress response (ISR) and ribotoxic stress response (RSR), respectively. Hierarchical crosstalks among RQC, ISR, and RSR pathways are readily detectable since the collided ribosome is their common substrate for activation. Given the strong implications of RQC factors in neuronal physiology and neurological disorders, the interplay between RQC and ribosome-associated stress signaling may sustain proteostasis, adaptively determine cell fate, and contribute to neural pathogenesis. The elucidation of underlying molecular principles in relevant human diseases should thus provide unexplored therapeutic opportunities.

지방 저장 식물의 퍼옥시좀 생성과 발달 (Development and Biogenesis of Peroxisome in Oil-seed Plants)

  • 김대재
    • 생명과학회지
    • /
    • 제33권8호
    • /
    • pp.651-662
    • /
    • 2023
  • 마이크로바디로 알려진 퍼옥시좀은 대부분의 진핵세포에서 흔히 발견되는 형태학적으로 유사한 세포내 소기관의 한 종류이다. 크기는 직경이 0.2~1.8 ㎛이고 단일 막으로 싸여 있다. 매질은 일반적으로 미세한 입자이지만 때로는 결정체 또는 섬유질의 형태가 관찰된다. 이들은 특징적으로 과산화수소(H2O2)를 생성하는 산화효소를 가지고 있으며 효소 카탈레이스를 함유하여 세포 소기관 내에서 생성되는 유독한 H2O2를 제거한다. 퍼옥시좀은 형태학적으로나 물질대사의 측면에서 진핵세포의 세포내 소기관으로써 대단히 역동적이다. 특히, 식물의 퍼옥시 좀은 β-산화, 글라이옥실산 회로 및 광호흡 등을 포함한 수많은 대사 과정과 관련이 있다. 또한, 식물 퍼옥시좀은 중요한 식물 호르몬인 옥신, 살리실산 및 자스몬산의 합성과 스트레스에 대한 반응 및 발달에 관여한다. 지난 20년 동안 진핵생물의 퍼옥시좀 발생에 관한 연구는 동물과 효모에서 상당한 진전을 이루었다. 정교한 분자생물학 기술의 발전과 유전체학의 광범위 활용으로 대부분의 퍼옥시좀 관련 유전자와 단백질(peroxin, PEX)이 확인되었다. 또한, 최근에 단백체 연구의 적용은 퍼옥시좀 단백질의 표적화, 조절 및 분해에 대한 이해와 함께 식물 퍼옥시좀의 발생에 대한 기초 정보를 얻을 수 있게 되었다. 이와 같은 퍼옥시좀 발달에 관한 연구에 커다란 진전에도 불구하고, 퍼옥시좀이 ER에서 유래하여 조립되고 분열하는 과정에 대하여 여전히 많은 의문이 남아 있다. 퍼옥시좀은 식물 발달의 여러 측면에서 역동적인 역할을 수행하며, 이 논문에서는 식물 퍼옥시좀의 기능, 발생 및 역동성에 대한 이해를 위하여 그 동안의 연구 동향에 중점을 두었다.