DOI QR코드

DOI QR Code

Mechanisms Underlying Plk1 Polo-Box Domain-Mediated Biological Processes and Their Physiological Significance

  • Lee, Kyung S. (Laboratory of Metabolism, National Cancer Institute, National Institutes of Health) ;
  • Park, Jung-Eun (Laboratory of Metabolism, National Cancer Institute, National Institutes of Health) ;
  • Kang, Young Hwi (Immune and Vascular Cell Network Research Center, Department of Life Science and GT5 Program, Ewha Womans University) ;
  • Kim, Tae-Sung (Laboratory of Metabolism, National Cancer Institute, National Institutes of Health) ;
  • Bang, Jeong K. (Division of Magnetic Resonance, Korea Basic Science Institute)
  • Received : 2014.01.09
  • Accepted : 2014.01.12
  • Published : 2014.04.30

Abstract

Mammalian polo-like kinase 1 (Plk1) has been studied intensively as a key regulator of various cell cycle events that are critical for proper M-phase progression. The polobox domain (PBD) present in Plk1's C-terminal noncatalytic region has been shown to play a central role in targeting the N-terminal kinase domain of Plk1 to specific subcellular locations. Subsequent studies reveal that PBD binds to a phosphorylated motif generated by one of the two mechanisms - self-priming by Plk1 itself or non-self-priming by a Pro-directed kinase, such as Cdc2. Here, we comparatively review the differences in the biochemical steps of these mechanisms and discuss their physiological significance. Considering the diverse functions of Plk1 during the cell cycle, a better understanding of how the catalytic activity of Plk1 functions in concert with its cisacting PBD and how this coordinated process is intricately regulated to promote Plk1 functions will be important for providing new insights into different mechanisms underlying various Plk1-mediated biological events that occur at the multiple stages of the cell cycle.

Keywords

References

  1. Archambault, V., and Glover, D.M. (2009). Polo-like kinases: conservation and divergence in their functions and regulation. Nat. Rev. Mol. Cell Biol. 10, 265-275. https://doi.org/10.1038/nrm2653
  2. Arnaud, L., Pines, J., and Nigg, E.A. (1998). GFP tagging reveals human Polo-like kinase 1 at the kinetochore/centromere region of mitotic chromosomes. Chromosoma 107, 424-429. https://doi.org/10.1007/s004120050326
  3. Barr, F.A., Sillje, H.H., and Nigg, E.A. (2004). Polo-like kinases and the orchestration of cell division. Nat. Rev. Mol. Cell Biol. 5, 429-440.
  4. Baumann, C., Korner, R., Hofmann, K., and Nigg, E.A. (2007). PICH, a centromere-associated SNF2 family ATPase, is regulated by Plk1 and required for the spindle checkpoint. Cell 128, 101-114. https://doi.org/10.1016/j.cell.2006.11.041
  5. Carman, G.M., Deems, R.A., and Dennis, E.A. (1995). Lipid signaling enzymes and surface dilution kinetics. J. Biol. Chem. 270, 18711-18714. https://doi.org/10.1074/jbc.270.32.18711
  6. Cheng, K.Y., Lowe, E.D., Sinclair, J., Nigg, E.A., and Johnson, L.N. (2003). The crystal structure of the human polo-like kinase-1 polo box domain and its phospho-peptide complex. EMBO J. 22, 5757-5768. https://doi.org/10.1093/emboj/cdg558
  7. Clay, F.J., McEwen, S.J., Bertoncello, I., Wilks, A.F., and Dunn, A.R. (1993). Identification and cloning of a protein kinase-encoding mouse gene, Plk, related to the polo gene of Drosophila. Proc. Natl. Acad. Sci. USA 90, 4882-4886. https://doi.org/10.1073/pnas.90.11.4882
  8. de Carcer, G., Escobar, B., Higuero, A.M., Garcia, L., Anson, A., Perez, G., Mollejo, M., Manning, G., Melendez, B., Abad-Rodriguez, J., et al. (2011a). Plk5, a polo box domain-only protein with specific roles in neuron differentiation and glioblastoma suppression. Mol. Cell. Biol. 31, 1225-1239. https://doi.org/10.1128/MCB.00607-10
  9. de Carcer, G., Manning, G., and Malumbres, M. (2011b). From Plk1 to Plk5: functional evolution of polo-like kinases. Cell Cycle 10, 2255-2262. https://doi.org/10.4161/cc.10.14.16494
  10. Elia, A.E., Cantley, L.C., and Yaffe, M.B. (2003a). Proteomic screen finds pSer/pThr-binding domain localizing Plk1 to mitotic substrates. Science 299, 1228-1231. https://doi.org/10.1126/science.1079079
  11. Elia, A.E., Rellos, P., Haire, L.F., Chao, J.W., Ivins, F.J., Hoepker, K., Mohammad, D., Cantley, L.C., Smerdon, S.J., and Yaffe, M.B. (2003b). The molecular basis for phospho-dependent substrate targeting and regulation of Plks by the polo-box domain. Cell 115, 83-95. https://doi.org/10.1016/S0092-8674(03)00725-6
  12. Elowe, S., Hummer, S., Uldschmid, A., Li, X., and Nigg, E.A. (2007). Tension-sensitive Plk1 phosphorylation on BubR1 regulates the stability of kinetochore microtubule interactions. Genes Dev. 21, 2205-2219. https://doi.org/10.1101/gad.436007
  13. Fu, Z., Malureanu, L., Huang, J., Wang, W., Li, H., van Deursen, J.M., Tindal, D.J., and Chen, J. (2008). Plk1-dependent phosphorylation of FoxM1 regulates a transcriptional programme required for mitotic progression. Nat. Cell Biol. 10, 1076-1082. https://doi.org/10.1038/ncb1767
  14. Garcia-Alvarez, B., de Carcer, G., Ibanez, S., Bragado-Nilsson, E., and Montoya, G. (2007). Molecular and structural basis of pololike kinase 1 substrate recognition: implications in centrosomal localization. Proc. Natl. Acad. Sci. USA 104, 3107-3112. https://doi.org/10.1073/pnas.0609131104
  15. Golsteyn, R.M., Mundt, K.E., Fry, A.M., and Nigg, E.A. (1995). Cell cycle regulation of the activity and subcellular localization of Plk1, a human protein kinase implicated in mitotic spindle function. J. Cell Biol. 129, 1617-1628. https://doi.org/10.1083/jcb.129.6.1617
  16. Hanisch, A., Wehner, A., Nigg, E.A., and Sillje, H.H. (2006). Different Plk1 functions show distinct dependencies on Polo-Box domain-mediated targeting. Mol. Biol. Cell 17, 448-459.
  17. Hanissian, S.H., Akbar, U., Teng, B., Janjetovic, Z., Hoffmann, A., Hitzler, J.K., Iscove, N., Hamre, K., Du, X., Tong, Y., et al. (2004). cDNA cloning and characterization of a novel gene encoding the MLF1-interacting protein MLF1IP. Oncogene 23, 3700-3707. https://doi.org/10.1038/sj.onc.1207448
  18. Jang, Y.J., Lin, C.Y., Ma, S., and Erikson, R.L. (2002). Functional studies on the role of the C-terminal domain of mammalian pololike kinase. Proc. Natl. Acad. Sci. USA 99, 1984-1989. https://doi.org/10.1073/pnas.042689299
  19. Johmura, Y., Soung, N.K., Park, J.E., Yu, L.R., Zhou, M., Bang, J.K., Kim, B.Y., Veenstra, T.D., Erikson, R.L., and Lee, K.S. (2011). Regulation of microtubule-based microtubule nucleation by mammalian polo-like kinase 1. Proc. Natl. Acad. Sci. USA 108, 11446-11451. https://doi.org/10.1073/pnas.1106223108
  20. Kang, Y.H., Park, J.-E., Yu, L.-R., Soung, N.-K., Yun, S.-M., Bang, J.K., Seong, Y.S., Yu, H., Veenstra, T.D., and Lee, K.S. (2006). Self-regulation of Plk1 recruitment to the kinetochores is critical for chromosome congression and spindle checkpoint signaling. Mol. Cell 24, 409-422. https://doi.org/10.1016/j.molcel.2006.10.016
  21. Lee, K.S., and Erikson, R.L. (1997). Plk is a functional homolog of Saccharomyces cerevisiae Cdc5, and elevated Plk activity induces multiple septation structures. Mol. Cell. Biol. 17, 3408-3417. https://doi.org/10.1128/MCB.17.6.3408
  22. Lee, K.S., Yuan, Y.-L., Kuriyama, R., and Erikson, R.L. (1995). Plk is an M-phase-specific protein kinase and interacts with a kinesin-like protein, CHO1/MKLP-1. Mol. Cell. Biol. 15, 7143-7151. https://doi.org/10.1128/MCB.15.12.7143
  23. Lee, K.S., Grenfell, T.Z., Yarm, F.R., and Erikson, R.L. (1998). Mutation of the polo-box disrupts localization and mitotic functions of the mammalian polo kinase Plk. Proc. Natl. Acad. Sci. USA 95, 9301-9306. https://doi.org/10.1073/pnas.95.16.9301
  24. Lee, K.S., Park, J.E., Kang, Y.H., Zimmerman, W., Soung, N.K., Seong, Y.S., Kwak, S.J., and Erikson, R.L. (2008). Mechanisms of mammalian polo-like kinase 1 (Plk1) localization: Self- versus non-self-priming. Cell Cycle 7, 141-145. https://doi.org/10.4161/cc.7.2.5272
  25. Lenart, P., Petronczki, M., Steegmaier, M., Di Fiore, B., Lipp, J.J., Hoffmann, M., Rettig, W.J., Kraut, N., and Peters, J.M. (2007). The small-molecule inhibitor BI 2536 reveals novel insights into mitotic roles of polo-like kinase 1. Curr. Biol. 17, 304-315. https://doi.org/10.1016/j.cub.2006.12.046
  26. Leung, G.C., Hudson, J.W., Kozarova, A., Davidson, A., Dennis, J.W., and Sicheri, F. (2002). The Sak polo-box comprises a structural domain sufficient for mitotic subcellular localization. Nat. Struct. Biol. 9, 719-724. https://doi.org/10.1038/nsb848
  27. Liu, F., Park, J.E., Qian, W.J., Lim, D., Graber, M., Berg, T., Yaffe, M.B., Lee, K.S., and Burke, T.R.J. (2011). Serendipitous alkylation of a Plk1 ligand uncovers a new binding channel. Nat. Chem. Biol. 7, 595-601. https://doi.org/10.1038/nchembio.614
  28. Lowery, D.M., Mohammad, D.H., Elia, A.E., and Yaffe, M.B. (2004). The Polo-box domain: a molecular integrator of mitotic kinase cascades and Polo-like kinase function. Cell Cycle 3, 128-131.
  29. Lowery, D.M., Lim, D., and Yaffe, M.B. (2005). Structure and function of polo-like kinases. Oncogene 24, 248-259. https://doi.org/10.1038/sj.onc.1208280
  30. Minoshima, Y., Hori, T., Okada, M., Kimura, H., Haraguchi, T., Hiraoka, Y., Bao, Y.C., Kawashima, T., Kitamura, T., and Fukagawa, T. (2005). The constitutive centromere component CENP-50 is required for recovery from spindle damage. Mol. Cell. Biol. 25, 10315-10328. https://doi.org/10.1128/MCB.25.23.10315-10328.2005
  31. Neef, R., Preisinger, C., Sutcliffe, J., Kopajtich, R., Nigg, E.A., Mayer, T.U., and Barr, F.A. (2003). Phosphorylation of mitotic kinesinlike protein 2 by polo-like kinase 1 is required for cytokinesis. J. Cell Biol. 162, 863-875. https://doi.org/10.1083/jcb.200306009
  32. Neef, R., Gruneberg, U., Kopajtich, R., Li, X., Nigg, E.A., Sillje, H., and Barr, F.A. (2007). Choice of Plk1 docking partners during mitosis and cytokinesis is controlled by the activation state of Cdk1. Nat. Cell. Biol. 9, 436-444. https://doi.org/10.1038/ncb1557
  33. Pan, H.Y., Zhang, Y.J., Wang, X.P., Deng, J.H., Zhou, F.C., and Gao, S.J. (2003). Identification of a novel cellular transcriptional repressor interacting with the latent nuclear antigen of Kaposi's sarcoma-associated herpesvirus. J. Virol. 77, 9758-9768. https://doi.org/10.1128/JVI.77.18.9758-9768.2003
  34. Park, J.-E., Li, L., Park, J., Knecht, R., Strebhardt, K., Yuspa, S.H., and Lee, K.S. (2009). Direct quantification of polo-like kinase 1 activity in cells and tissues using a highly sensitive and specific ELISA assay. Proc. Natl. Acad. Sci. USA 106, 1725-1730. https://doi.org/10.1073/pnas.0812135106
  35. Park, J.E., Soung, N.K., Johmura, Y., Kang, Y.H., Liao, C., Lee, K.H., Park, C.H., Nicklaus, M.C., and Lee, K.S. (2010). Polo-box domain: a versatile mediator of polo-like kinase function. Cell. Mol. Life Sci. 67, 1957-1970. https://doi.org/10.1007/s00018-010-0279-9
  36. Park, J.E., Erikson, R.L., and Lee, K.S. (2011). Feed-forward mechanism of converting biochemical cooperativity to mitotic processes at the kinetochore plate. Proc. Natl. Acad. Sci. USA 108, 8200-8205. https://doi.org/10.1073/pnas.1102020108
  37. Qi, W., Tang, Z., and Yu, H. (2006). Phosphorylation- and Polo-Box-dependent Binding of Plk1 to Bub1 Is Required for the Kinetochore Localization of Plk1. Mol. Biol. Cell 17, 3705-3716. https://doi.org/10.1091/mbc.E06-03-0240
  38. Seong, Y.S., Kamijo, K., Lee, J.S., Fernandez, E., Kuriyama, R., Miki, T., and Lee, K.S. (2002). A spindle checkpoint arrest and a cytokinesis failure by the dominant-negative polo-box domain of Plk1 in U-2 OS cells. J. Biol. Chem. 277, 32282-32293. https://doi.org/10.1074/jbc.M202602200
  39. Slevin, L.K., Nye, J., Pinkerton, D.C., Buster, D.W., Rogers, G.C., and Slep, K.C. (2012). The structure of the plk4 cryptic polo box reveals two tandem polo boxes required for centriole duplication. Structure 20, 1905-1917. https://doi.org/10.1016/j.str.2012.08.025
  40. Soung, N.K., Kang, Y.H., Kim, K., Kamijo, K., Yoon, H., Seong, Y.S., Kuo, Y.L., Miki, T., Kim, S.R., Kuriyama, R., et al. (2006). Requirement of hCenexin for proper mitotic functions of polo-like kinase 1 at the centrosomes. Mol. Cell. Biol. 26, 8316-8335. https://doi.org/10.1128/MCB.00671-06
  41. Soung, N.K., Park, J.E., Yu, L.R., Lee, K.H., Lee, J.M., Bang, J.K., Veenstra, T.D., Rhee, K., and Lee, K.S. (2009). Plk1-dependent and -independent roles of an ODF2 splice variant, hCenexin1, at the centrosome of somatic cells. Dev. Cell 16, 539-550. https://doi.org/10.1016/j.devcel.2009.02.004
  42. Strebhardt, K. (2010). Multifaceted polo-like kinases: drug targets and antitargets for cancer therapy. Nat. Rev. Drug Discov. 9, 643-660. https://doi.org/10.1038/nrd3184
  43. Strebhardt, K., and Ullrich, A. (2006). Targeting polo-like kinase 1 for cancer therapy. Nat. Rev. Cancer 6, 321-330. https://doi.org/10.1038/nrc1841
  44. Takai, N., Hamanaka, R., Yoshimatsu, J., and Miyakawa, I. (2005). Polo-like kinases (Plks) and cancer. Oncogene 24, 287-291. https://doi.org/10.1038/sj.onc.1208272
  45. Takaki, T., Trenz, K., Costanzo, V., and Petronczki, M. (2008). Pololike kinase 1 reaches beyond mitosis--cytokinesis, DNA damage response, and development. Curr. Opin. Cell Biol. 20, 650-660. https://doi.org/10.1016/j.ceb.2008.10.005
  46. van de Weerdt, B.C., and Medema, R.H. (2006). Polo-like kinases: a team in control of the division. Cell Cycle 5, 853-864. https://doi.org/10.4161/cc.5.8.2692
  47. Watanabe, N., Arai, H., Nishihara, Y., Taniguchi, M., Watanabe, N., Hunter, T., and Osada, H. (2004). M-phase kinases induce phospho- dependent ubiquitination of somatic Wee1 by SCFbeta-TrCP. Proc. Natl. Acad. Sci. USA 101, 4419-4424. https://doi.org/10.1073/pnas.0307700101
  48. Xu, J., Shen, C., Wang, T., and Quan, J. (2013). Structural basis for the inhibition of Polo-like kinase 1. Nat. Struct. Mol. Biol. 20, 1047-1053. https://doi.org/10.1038/nsmb.2623
  49. Yun, S.M., Moulaei, T., Lim, D., Bang, J.K., Park, J.E., Shenoy, S.R., Liu, F., Kang, Y.H., Liao, C., Soung, N.K., et al. (2009). Structural and functional analyses of minimal phosphopeptides targeting the polo-box domain of polo-like kinase 1. Nat. Struct. Mol. Biol. 16, 876-882. https://doi.org/10.1038/nsmb.1628
  50. Zhang, X., Chen, Q., Feng, J., Hou, J., Yang, F., Liu, J., Jiang, Q., and Zhang, C. (2009). Sequential phosphorylation of Nedd1 by Cdk1 and Plk1 is required for targeting of the gammaTuRC to the centrosome. J. Cell Sci. 122, 2240-2251. https://doi.org/10.1242/jcs.042747

Cited by

  1. Polo-like kinase 3 regulates CtIP during DNA double-strand break repair in G1 vol.206, pp.7, 2014, https://doi.org/10.1083/jcb.201401146
  2. Cdk1 phosphorylates the Rac activator Tiam1 to activate centrosomal Pak and promote mitotic spindle formation vol.6, 2015, https://doi.org/10.1038/ncomms8437
  3. Mono-anionic phosphopeptides produced by unexpected histidine alkylation exhibit high plk1 polo-box domain-binding affinities and enhanced antiproliferative effects in hela cells vol.102, pp.6, 2014, https://doi.org/10.1002/bip.22569
  4. The equilibrium of ubiquitination and deubiquitination at PLK1 regulates sister chromatid separation vol.74, pp.12, 2017, https://doi.org/10.1007/s00018-017-2457-5
  5. Temporal SILAC-based quantitative proteomics identifies host factors involved in chikungunya virus replication vol.15, pp.13, 2015, https://doi.org/10.1002/pmic.201400581
  6. Molecular dynamics of PLK1 during mitosis vol.1, pp.2, 2014, https://doi.org/10.1080/23723548.2014.954507
  7. Cyclin A/Cdk1 modulates Plk1 activity in prometaphase to regulate kinetochore-microtubule attachment stability vol.6, pp.2050-084X, 2017, https://doi.org/10.7554/eLife.29303
  8. Aurora-PLK1 cascades as key signaling modules in the regulation of mitosis vol.11, pp.543, 2018, https://doi.org/10.1126/scisignal.aar4195
  9. Systematic discovery of linear binding motifs targeting an ancient protein interaction surface on MAP kinases vol.11, pp.11, 2014, https://doi.org/10.15252/msb.20156269
  10. ATP-competitive Plk1 inhibitors induce caspase 3-mediated Plk1 cleavage and activation in hematopoietic cell lines vol.9, pp.13, 2014, https://doi.org/10.18632/oncotarget.23650
  11. A cryptic hydrophobic pocket in the polo-box domain of the polo-like kinase PLK1 regulates substrate recognition and mitotic chromosome segregation vol.9, pp.1, 2014, https://doi.org/10.1038/s41598-019-50702-2
  12. Development of radiotracer for polo-box domain of polo-like kinase 1 vol.5, pp.2, 2014, https://doi.org/10.22643/jrmp.2019.5.2.152
  13. The centriole protein CEP76 negatively regulates PLK1 activity in the cytoplasm for proper mitotic progression vol.133, pp.19, 2014, https://doi.org/10.1242/jcs.241281
  14. PLK1‐dependent phosphorylation restrains EBNA2 activity and lymphomagenesis in EBV‐infected mice vol.22, pp.12, 2014, https://doi.org/10.15252/embr.202153007