• Title/Summary/Keyword: Subcellular localization

Search Result 159, Processing Time 0.029 seconds

Subcellular Localization of Capsaicin-Hydrolyzing Enzyme in Rat Hepatocytes (Capsaicin 가수분해효소의 흰쥐 간세포내 소재확인)

  • Park, Young-Ho;Lee, Sang-Sup
    • YAKHAK HOEJI
    • /
    • v.38 no.1
    • /
    • pp.12-19
    • /
    • 1994
  • Capsaicin(8-methyl-N-vanillyl-6-nonenamide) is the principal pungent component of Capsicum fruits. This work is directed to the capsaicin-hydrolyzing enzyme playing a key role in the rate limiting and critical step of capsaicin metabolism. In order to get precise information on the enzyme's subcellular location, rat liver homogenate was divided into six subcellular fractions by differential centrifugation technique: crude nuclear pellet, PNS(post nuclear supernatant) fraction, lysosomal pellet, cytosol, Tris wash fraction, micrisomes. Capsaicin-hydrolysing enzyme activity was analysed by high performance liquid chromatography(HPLC). This enzyme was found at the highest specific activity in the microsomal fraction and co-distributed with marker enzymes of the endoplasmic reticulum, NADPH-cytochrome c reductase and nucleoside diphosphatase. This is compatible with the result of ninhydrin color reaction of vanillylamine, primary metabolite of capsaicin hydrolysis, on thin layer chromatography(TLC). This enzyme is most active at pH $8.0{\sim}9.0$. Definite subcellular location of this enzyme will make it easy to proceed with further study.

  • PDF

Sequence driven features for prediction of subcellular localization of proteins

  • Kim, Jong-Kyoung;Bang, Sung-Yang;Choi, Seung-Jin
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.237-242
    • /
    • 2005
  • Predicting the cellular location of an unknown protein gives a valuable information for inferring the possible function of the protein. For more accurate prediction system, we need a good feature extraction method that transforms the raw sequence data into the numerical feature vector, minimizing information loss. In this paper, we propose new methods of extracting underlying features only from the sequence data by computing pairwise sequence alignment scores. In addition, we use composition based features to improve prediction accuracy. To construct an SVM ensemble from separately trained SVM classifiers, we propose specificity based weighted majority voting. The overall prediction accuracy evaluated by the 5-fold cross-validation reached 88.53% for the eukaryotic animal data set. By comparing the prediction accuracy of various feature extraction methods, we could get the biological insight on the location of targeting information. Our numerical experiments confirm that our new feature extraction methods are very useful for predicting subcellular localization of proteins.

  • PDF

A Unique Strategy for Recovering Recombinant Proteins from Molecular Farming: Affinity Couture on Engineered Oilbodies

  • Seon, Jeong-Hoon;J.Steven Szarka;Maurice M. Moloney
    • Journal of Plant Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.95-101
    • /
    • 2002
  • Molecular faming has the potential to provide large amounts of recombinant protein for use in diagnostics and as therapeutics. Various strategies have been developed to enhance the expression level, stability, and native folding of recombinant proteins produced in plants. Few investigations into the subcellular distribution of recombinant proteins within plant cells have been published despite the potential to increase the expression level and impact the purification process. This review article discusses the current strategies used for targeting recombinant proteins to various subcellular locations and the advantages of targeting to seed oil bodies for molecular farming applications. Specifically, the affinity capture of antibodies using recombinant oilbodies is discussed.

Classification Protein Subcellular Locations Using n-Gram Features (단백질 서열의 n-Gram 자질을 이용한 세포내 위치 예측)

  • Kim, Jinsuk
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.12-16
    • /
    • 2007
  • The function of a protein is closely co-related with its subcellular location(s). Given a protein sequence, therefore, how to determine its subcellular location is a vitally important problem. We have developed a new prediction method for protein subcellular location(s), which is based on n-gram feature extraction and k-nearest neighbor (kNN) classification algorithm. It classifies a protein sequence to one or more subcellular compartments based on the locations of top k sequences which show the highest similarity weights against the input sequence. The similarity weight is a kind of similarity measure which is determined by comparing n-gram features between two sequences. Currently our method extract penta-grams as features of protein sequences, computes scores of the potential localization site(s) using kNN algorithm, and finally presents the locations and their associated scores. We constructed a large-scale data set of protein sequences with known subcellular locations from the SWISS-PROT database. This data set contains 51,885 entries with one or more known subcellular locations. Our method show very high prediction precision of about 93% for this data set, and compared with other method, it also showed comparable prediction improvement for a test collection used in a previous work.

  • PDF

Mitochondrially Targeted Bcl-2 and Bcl-XL Chimeras Elicit Different Apoptotic Responses

  • Liu, Sen;Pereira, Natasha Ann;Teo, Joong Jiat;Miller, Peter;Shah, Priya;Song, Zhiwei
    • Molecules and Cells
    • /
    • v.24 no.3
    • /
    • pp.378-387
    • /
    • 2007
  • The Bcl-2 family of proteins interacts at the mitochondria to regulate apoptosis. However, the anti-apoptotic Bcl-2 and $Bcl-X_L$ are not completely localized to the mitochondria. In an attempt to generate Bcl-2 and $Bcl-X_L$ chimeras that are constitutively localized to the mitochondria, we substituted their C-terminal transmembrane tail or both the C-terminal transmembrane tail and the adjacent loop with the equivalent regions from Bak or Bax mutant (BaxS184V) as these regions determine the mitochondrial localization of Bak and Bax. The effects of these substitutions on subcellular localization and their activities were assessed following expression in HeLa and CHO K1 cells. The substitution of the C-terminal tail or the C-terminal tail and the adjacent loop of Bcl-2 with the equivalent regions from Bak or the Bax mutant resulted in its association with the mitochondria. This change in subcellular localization of Bcl-2 chimeras triggered cells to undergo apoptotic-like cell death. The localization of this Bcl-2 chimera to the mitochondria may be associated with the disruption of mitochondrial membrane potential. Unlike Bcl-2, the loop structure adjacent to the C-terminal tail in $Bcl-X_L$ is crucial for its localization. To localize the $Bcl-X_L$ chimeras to the mitochondria, the loop structure next to the C-terminal tail in $Bcl-X_L$ protein must remain intact and cannot be substituted by the loop from Bax or Bak. The chimeric $Bcl-X_L$ with both its C-terminal tail and the loop structure replaced by the equivalent regions of Bak or Bax mutant localized throughout the entire cytosol. The $Bcl-X_L$ chimeras that are targeted to the mitochondria and the wild type $Bcl-X_L$ provided same protection against cell death under several death inducing conditions.