• Title/Summary/Keyword: Subcellular dynamics

Search Result 16, Processing Time 0.024 seconds

GTP Binding Is Required for SEPT12 to Form Filaments and to Interact with SEPT11

  • Ding, Xiangming;Yu, Wenbo;Liu, Ming;Shen, ShuQing;Chen, Fang;Cao, Lihuan;Wan, Bo;Yu, Long
    • Molecules and Cells
    • /
    • v.25 no.3
    • /
    • pp.385-389
    • /
    • 2008
  • Septins are a family of filament-forming GTP-binding proteins involved in a variety of cellular process such as cytokinesis, exocytosis, and membrane dynamics. Here we report the biochemical and immunocytochemical characterization of a recently identified mammalian septin, SEPT12. SEPT12 binds GTP in vitro, and a mutation (Gly56 to Asn) in the GTP-binding motif abolished binding. Immunocytochemical analysis revealed that wild-type SEPT12 formed filamentous structures when transiently expressed in Hela cells whereas $SEPT12^{G56A}$ generated large aggregates. In addition, wild-type SEPT12 failed to form filaments when coexpressed with $SEPT12^{G56A}$. We also observed that GTP-binding by SEPT12 is required for interaction with SEPT11 but not with itself.

Korean Red Ginseng protects endothelial cells from serum-deprived apoptosis by regulating Bcl-2 family protein dynamics and caspase S-nitrosylation

  • Kim, Young-Mi;Kim, Jung Hwan;Kwon, Hyuk Min;Lee, Dong Heon;Won, Moo-Ho;Kwon, Young-Guen;Kim, Young-Myeong
    • Journal of Ginseng Research
    • /
    • v.37 no.4
    • /
    • pp.413-424
    • /
    • 2013
  • Korean Red Ginseng extract (KRGE) is a traditional herbal medicine utilized to prevent endothelium dysfunction in the cardiovascular system; however, its underlying mechanism has not been clearly elucidated. We here examined the pharmacological effect and molecular mechanism of KRGE on apoptosis of human umbilical vein endothelial cells (HUVECs) in a serum-deprived apoptosis model. KRGE protected HUVECs from serum-deprived apoptosis by inhibiting mitochondrial cytochrome c release and caspase-9/-3 activation. This protective effect was significantly higher than that of American ginseng extract. KRGE treatment increased antiapoptotic Bcl-2 and Bcl-$X_L$ protein expression and Akt-dependent Bad phosphorylation. Moreover, KRGE prevented serum deprivation-induced subcellular redistribution of these proteins between the mitochondrion and the cytosol, resulting in suppression of mitochondrial cytochrome c release. In addition, KRGE increased nitric oxide (NO) production via Akt-dependent activation of endothelial NO synthase (eNOS), as well as inhibited caspase-9/-3 activities. These increases were reversed by co-treatment of cells with inhibitors of eNOS and phosphoinositide 3-kinase (PI3K) and pre-incubation of cell lysates in dithiothreitol, indicating KRGE induces NO-mediated caspase modification. Indeed, KRGE inhibited caspase-3 activity via S-nitrosylation. These findings suggest that KRGE prevents serum deprivation-induced HUVEC apoptosis via increased Bcl-2 and Bcl-$X_L$ protein expression, PI3K/Akt-dependent Bad phosphorylation, and eNOS/NO-mediated S-nitrosylation of caspases. The cytoprotective property of KRGE may be valuable for developing new pharmaceutical means that limit endothelial cell death induced during the pathogenesis of vascular diseases.

Ultrastructural changes in cristae of lymphoblasts in acute lymphoblastic leukemia parallel alterations in biogenesis markers

  • Ritika Singh;Ayushi Jain;Jayanth Kumar Palanichamy;T. C. Nag;Sameer Bakhshi;Archna Singh
    • Applied Microscopy
    • /
    • v.51
    • /
    • pp.20.1-20.12
    • /
    • 2021
  • We explored the link between mitochondrial biogenesis and mitochondrial morphology using transmission electron microscopy (TEM) in lymphoblasts of pediatric acute lymphoblastic leukemia (ALL) patients and compared these characteristics between tumors and control samples. Gene expression of mitochondrial biogenesis markers was analysed in 23 ALL patients and 18 controls and TEM for morphology analysis was done in 15 ALL patients and 9 healthy controls. The area occupied by mitochondria per cell and the cristae cross-sectional area was observed to be significantly higher in patients than in controls (p-value=0.0468 and p-value<0.0001, respectively). The mtDNA copy numbers, TFAM, POLG, and c-myc gene expression were significantly higher in ALL patients than controls (all p-values<0.01). Gene Expression of PGC-1α was higher in tumor samples. The analysis of the correlation between PGC-1α expression and morphology parameters i.e., both M/C ratio and cristae cross-sectional area revealed a positive trend (r=0.3, p=0.1). The increased area occupied by mitochondria and increased cristae area support the occurrence of cristae remodelling in ALL. These changes might reflect alterations in cristae dynamics to support the metabolic state of the cells by forming a more condensed network. Ultrastructural imaging can be useful for affirming changes occurring at a subcellular organellar level.

Ataxin-2 Dysregulation Triggers a Compensatory Fragile X Mental Retardation Protein Decrease in Drosophila C4da Neurons

  • Cha, In Jun;Lee, Davin;Park, Sung Soon;Chung, Chang Geon;Kim, Seung Yeon;Jo, Min Gu;Kim, Seung Yeol;Lee, Byung-Hoon;Lee, Young-Sam;Lee, Sung Bae
    • Molecules and Cells
    • /
    • v.43 no.10
    • /
    • pp.870-879
    • /
    • 2020
  • Dendrites require precise and timely delivery of protein substrates to distal areas to ensure the correct morphology and function of neurons. Many of these protein substrates are supplied in the form of ribonucleoprotein (RNP) complex consisting of RNA-binding proteins (RBPs) and mRNAs, which are subsequently translated in distal dendritic areas. It remains elusive, however, whether key RBPs supply mRNA according to local demands individually or in a coordinated manner. In this study, we investigated how Drosophila sensory neurons respond to the dysregulation of a disease-associated RBP, Ataxin-2 (ATX2), which leads to dendritic defects. We found that ATX2 plays a crucial role in spacing dendritic branches for the optimal dendritic receptive fields in Drosophila class IV dendritic arborization (C4da) neurons, where both expression level and subcellular location of ATX2 contribute significantly to this effect. We showed that translational upregulation through the expression of eukaryotic translation initiation factor 4E (eIF4E) further enhanced the ATX2-induced dendritic phenotypes. Additionally, we found that the expression level of another disease-associated RBP, fragile X mental retardation protein (FMRP), decreased in both cell bodies and dendrites when neurons were faced with aberrant upregulation of ATX2. Finally, we revealed that the PAM2 motif of ATX2, which mediates its interaction with poly(A)-binding protein (PABP), is potentially necessary for the decrease of FMRP in certain neuronal stress conditions. Collectively, our data suggest that dysregulation of RBPs triggers a compensatory regulation of other functionally-overlapping RBPs to minimize RBP dysregulation-associated aberrations that hinder neuronal homeostasis in dendrites.

Bioinformatic Analysis of NLS (Nuclear Localization Signals)-containing Proteins from Mollusks (생물정보학을 이용한 연체동물의 NLS (Nuclear Localization Signals) 포함 단백질의 분석)

  • Lee, Yong-Seok;Kang, Se-Won;Jo, Yong-Hun;Gwak, Heui-Chul;Chae, Sung-Hwa;Choi, Sang-Haeng;Ahn, In-Young;Park, Hong-Seog;Han, Yeon-Soo;Kho, Weon-Gyu
    • The Korean Journal of Malacology
    • /
    • v.22 no.2
    • /
    • pp.109-113
    • /
    • 2006
  • Subcellular localization of a protein containing nuclear localization signals (NLS) has been well studied in many organisms ranging from invertebrates to vertebrates. However, no systematic analysis of NLS-containing proteins available from Mollusks has been reported. Here, we describe in silico screening of NLS-containing proteins using the mollusks database that contains 22,138 amino acids. To screen putative proteins with NLS-motif, we used both predict NLS and perl script. As a result, we have found 266 proteins containing NLS sequences which are about 1.2% out of the entire proteins. On the basis of KOG (The eukaryotic orthologous groups) analysis, we can't predict the precise functions of the NLS-containing proteins. However, we found out that these proteins belong to several types of proteins such as chromatin structure and dynamics, translation, ribosomal structure, biogenesis, and signal transduction mechanism. In addition, we have analysed these sequences based on the classes of mollusks. We could not find many from the species that are the main subjects of phylogenetic studies. In contrast, we noticed that cephalopods has the highest number of NLS-containing proteins. Thus, we have constructed mollusks NLS database and added these information and data to the mollusks database by constructing web interface. Taken together, these information will be very useful for those who are or will be studying NLS-containing proteins from mollusks.

  • PDF

Development and Biogenesis of Peroxisome in Oil-seed Plants (지방 저장 식물의 퍼옥시좀 생성과 발달)

  • Dae-Jae Kim
    • Journal of Life Science
    • /
    • v.33 no.8
    • /
    • pp.651-662
    • /
    • 2023
  • Peroxisomes, known as microbodies, are a class of morphologically similar subcellular organelles commonly found in most eukaryotic cells. They are 0.2~1.8 ㎛ in diameter and are bound by a single membrane. The matrix is usually finely granular, but occasionally crystalline or fibrillary inclusions are observed. They characteristically contain hydrogen peroxide (H2O2) generating oxidases and contain the enzyme catalase, thus confining the metabolism of the poisonous H2O2 within these organelles. Therefore, the eukaryotic organelles are greatly dynamic both in morphology and metabolism. Plant peroxisomes, in particular, are associated with numerous metabolic processes, including β-oxidation, the glyoxylate cycle and photorespiration. Furthermore, plant peroxisomes are involved in development, along with responses to stresses such as the synthesis of important phytohormones of auxins, salicylic acid and jasmonic acids. In the past few decades substantial progress has been made in the study of peroxisome biogenesis in eukaryotic organisms, mainly in animals and yeasts. Advancement of sophisticated techniques in molecular biology and widening of the range of genomic applications have led to the identification of most peroxisomal genes and proteins (peroxins, PEXs). Furthermore, recent applications of proteome study have produced fundamental information on biogenesis in plant peroxisomes, together with improving our understanding of peroxisomal protein targeting, regulation, and degradation. Nonetheless, despite this progress in peroxisome development, much remains to be explained about how peroxisomes originate from the endoplasmic reticulum (ER), then assemble and divide. Peroxisomes perform dynamic roles in many phases of plant development, and in this review, we focus on the latest progress in furthering our understanding of plant peroxisome functions, biogenesis, and dynamics.