GTP Binding Is Required for SEPT12 to Form Filaments and to Interact with SEPT11

  • Ding, Xiangming (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University) ;
  • Yu, Wenbo (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University) ;
  • Liu, Ming (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University) ;
  • Shen, ShuQing (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University) ;
  • Chen, Fang (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University) ;
  • Cao, Lihuan (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University) ;
  • Wan, Bo (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University) ;
  • Yu, Long (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University)
  • Received : 2007.08.16
  • Accepted : 2007.11.26
  • Published : 2008.05.31

Abstract

Septins are a family of filament-forming GTP-binding proteins involved in a variety of cellular process such as cytokinesis, exocytosis, and membrane dynamics. Here we report the biochemical and immunocytochemical characterization of a recently identified mammalian septin, SEPT12. SEPT12 binds GTP in vitro, and a mutation (Gly56 to Asn) in the GTP-binding motif abolished binding. Immunocytochemical analysis revealed that wild-type SEPT12 formed filamentous structures when transiently expressed in Hela cells whereas $SEPT12^{G56A}$ generated large aggregates. In addition, wild-type SEPT12 failed to form filaments when coexpressed with $SEPT12^{G56A}$. We also observed that GTP-binding by SEPT12 is required for interaction with SEPT11 but not with itself.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Adam, J.C., Pringle, J.R., and Peifer, M. (2000). Evidence for functional differentiation among Drosophila septins in cytokinesis and cellularization. Mol. Biol. Cell. 11, 3123-3135 https://doi.org/10.1091/mbc.11.9.3123
  2. Beites, C.L., Xie, H., Bowser, R., and Trimble, W.S. (1999). The septin CDCrel-1 binds syntaxin and inhibits exocytosis. Nat. Neurosci. 2, 434-439 https://doi.org/10.1038/8100
  3. Blaser, S., Horn, J., Wurmell, P., Bauer, H., Strumpell, S., Nurden, P., Pagenstecher, A., Busse, A., Wunderle, D., Hainmann, I., et al. (2004). The novel human platelet septin SEPT8 is an interaction partner of SEPT4. Thromb. Haemost. 91, 959-966
  4. Blaser, S., Roseler, S., Rempp, H., Bartsch, I., Bauer, H., Lieber, M., Lessmann, E., Weingarten, L., Busse, A., Huber, M., et al. (2006). Human endothelial cell septins: SEPT11 is an interaction partner of SEPT5. J. Pathol. 210, 103-110 https://doi.org/10.1002/path.2013
  5. Cooper, J.A., and Kiehart, D.P. (1996). Septins may form a ubiquitous family of cytoskeletal filaments. J. Cell Biol. 134, 1345-1348 https://doi.org/10.1083/jcb.134.6.1345
  6. Field, C.M., al-Awar, O., Rosenblatt, J., Wong, M.L., Alberts, B., and Mitchison, T.J. (1996). A purified Drosophila septin complex forms filaments and exhibits GTPase activity. J. Cell Biol. 133, 605-616 https://doi.org/10.1083/jcb.133.3.605
  7. Field, C.M., and Kellogg, D. (1999). Septins: cytoskeletal polymers or signalling GTPases? Trends Cell Biol. 9, 387-394 https://doi.org/10.1016/S0962-8924(99)01632-3
  8. Hall, P.A., Jung, K., Hillan, K.J., and Russell, S.E. (2005). Expression profiling the human septin gene family. J. Pathol. 206, 269-278 https://doi.org/10.1002/path.1789
  9. Hanai, N., Nagata, K., Kawajiri, A., Shiromizu, T., Saitoh, N., Hasegawa, Y., Murakami, S., and Inagaki, M. (2004). Biochemical and cell biological characterization of a mammalian septin, Sept11. FEBS Lett. 568, 83-88 https://doi.org/10.1016/j.febslet.2004.05.030
  10. Hartwell, L.H. (1971). Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis. Exp. Cell Res. 69, 265-276 https://doi.org/10.1016/0014-4827(71)90223-0
  11. Hsu, S.C., Hazuka, C.D., Roth, R., Foletti, D.L., Heuser, J., and Scheller, R.H. (1998). Subunit composition, protein interactions, and structures of the mammalian brain sec6/8 complex and septin filaments. Neuron 20, 1111-1122 https://doi.org/10.1016/S0896-6273(00)80493-6
  12. Ihara, M., Tomimoto, H., Kitayama, H., Morioka, Y., Akiguchi, I., Shibasaki, H., Noda, M., and Kinoshita, M. (2003). Association of the cytoskeletal GTP-binding protein Sept4/H5 with cytoplasmic inclusions found in Parkinson's disease and other synucleinopathies. J. Biol. Chem. 278, 24095-24102 https://doi.org/10.1074/jbc.M301352200
  13. Kinoshita, M. (2003). Assembly of mammalian septins. J. Biochem. (Tokyo). 134, 491-496 https://doi.org/10.1093/jb/mvg182
  14. Kinoshita, M., Field, C.M., Coughlin, M.L., Straight, A.F., and Mitchison, T.J. (2002). Self- and actin-templated assembly of Mammalian septins. Dev. Cell. 3, 791-802 https://doi.org/10.1016/S1534-5807(02)00366-0
  15. Kinoshita, M., Kumar, S., Mizoguchi, A., Ide, C., Kinoshita, A., Haraguchi, T., Hiraoka, Y., and Noda, M. (1997). Nedd5, a mammalian septin, is a novel cytoskeletal component interacting with actin-based structures. Genes Dev. 11, 1535-1547 https://doi.org/10.1101/gad.11.12.1535
  16. Larisch, S., Yi, Y., Lotan, R., Kerner, H., Eimerl, S., Tony Parks, W., Gottfried, Y., Birkey, Reffey S., de Caestecker, M.P., Danielpour, D., et al. (2000). A novel mitochondrial septinlike protein, ARTS, mediates apoptosis dependent on its Ploop motif. Nat. Cell Biol. 2, 915-921 https://doi.org/10.1038/35046566
  17. Martinez, C., Sanjuan, M.A., Dent, J.A., Karlsson, L., and Ware, J. (2004). Human septin-septin interactions as a prerequisite for targeting septin complexes in the cytosol. Biochem. J. 382, 783-791 https://doi.org/10.1042/BJ20040372
  18. McIlhatton, M.A., Burrows, J.F., Donaghy, P.G., Chanduloy, S., Johnston, P.G., and Russell, S.E. (2001). Genomic organization, complex splicing pattern and expression of a human septin gene on chromosome 17q25.3. Oncogene 20, 5930-5939 https://doi.org/10.1038/sj.onc.1204752
  19. Mendoza, M., Hyman, A.A., and Glotzer, M. (2002). GTP binding induces filament assembly of a recombinant septin. Curr. Biol. 12, 1858-1863 https://doi.org/10.1016/S0960-9822(02)01258-7
  20. Nagata, K., Asano, T., Nozawa, Y., and Inagaki, M. (2004). Biochemical and cell biological analyses of a mammalian septin complex, Sept7/9b/11. J. Biol. Chem. 279, 55895-55904 https://doi.org/10.1074/jbc.M406153200
  21. Nagata, K., Kawajiri, A., Matsui, S., Takagishi, M., Shiromizu, T., Saitoh, N., Izawa, I., Kiyono, T., Itoh, T.J., Hotani, H., et al. (2003). Filament formation of MSF-A, a mammalian septin, in human mammary epithelial cells depends on interactions with microtubules. J. Biol. Chem. 278, 18538-18543 https://doi.org/10.1074/jbc.M205246200
  22. Russell, S.E., and Hall, P.A. (2005). Do septins have a role in cancer? Br. J. Cancer. 93, 499-503 https://doi.org/10.1038/sj.bjc.6602753
  23. Surka, M.C., Tsang, C.W., and Trimble, W.S. (2002). The mammalian septin MSF localizes with microtubules and is required for completion of cytokinesis. Mol. Biol. Cell 13, 3532-3545 https://doi.org/10.1091/mbc.E02-01-0042
  24. Versele, M., and Thorner, J. (2004). Septin collar formation in budding yeast requires GTP binding and direct phosphorylation by the PAK, Cla4. J. Cell Biol. 164, 701-715 https://doi.org/10.1083/jcb.200312070
  25. Versele, M., and Thorner, J. (2005). Some assembly required: yeast septins provide the instruction manual. Trends Cell Biol. 15, 414-424 https://doi.org/10.1016/j.tcb.2005.06.007
  26. Vrabioiu, A.M., Gerber, S.A., Gygi, S.P., Field, C.M., and Mitchison, T.J. (2004). The majority of the Saccharomyces cerevisiae septin complexes do not exchange guanine nucleotides. J. Biol. Chem. 279, 3111-3118 https://doi.org/10.1074/jbc.M310941200
  27. Xue, J., Wang, X., Malladi, C.S., Kinoshita, M., Milburn, P.J., Lengyel, I., Rostas, J.A., and Robinson, P.J. (2000). Phosphorylation of a new brain-specific septin, G-septin, by cGMP-dependent protein kinase. J. Biol. Chem. 275, 10047-10056 https://doi.org/10.1074/jbc.275.14.10047