• Title/Summary/Keyword: Subbaro's DFD

Search Result 2, Processing Time 0.017 seconds

Depth Map Generation Using Infocused and Defocused Images (초점 영상 및 비초점 영상으로부터 깊이맵을 생성하는 방법)

  • Mahmoudpour, Saeed;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.19 no.3
    • /
    • pp.362-371
    • /
    • 2014
  • Blur variation caused by camera de-focusing provides a proper cue for depth estimation. Depth from Defocus (DFD) technique calculates the blur amount present in an image considering that blur amount is directly related to scene depth. Conventional DFD methods use two defocused images that might yield the low quality of an estimated depth map as well as a reconstructed infocused image. To solve this, a new DFD methodology based on infocused and defocused images is proposed in this paper. In the proposed method, the outcome of Subbaro's DFD is combined with a novel edge blur estimation method so that improved blur estimation can be achieved. In addition, a saliency map mitigates the ill-posed problem of blur estimation in the region with low intensity variation. For validating the feasibility of the proposed method, twenty image sets of infocused and defocused images with 2K FHD resolution were acquired from a camera with a focus control in the experiments. 3D stereoscopic image generated by an estimated depth map and an input infocused image could deliver the satisfactory 3D perception in terms of spatial depth perception of scene objects.

A Depth Estimation Using Infocused and Defocused Images (인포커스 및 디포커스 영상으로부터 깊이맵 생성)

  • Mahmoudpour, Seed;Kim, Manbae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.11a
    • /
    • pp.114-115
    • /
    • 2013
  • The blur amount of an image changes proportional to scene depth. Depth from Defocus (DFD) is an approach in which a depth map can be obtained using blur amount calculation. In this paper, a novel DFD method is proposed in which depth is measured using an infocused and a defocused image. Subbaro's algorithm is used as a preliminary depth estimation method and edge blur estimation is provided to overcome drawbacks in edge.

  • PDF