• Title/Summary/Keyword: Sub-zero temperature

Search Result 116, Processing Time 0.022 seconds

Structural Analysis of Al2Ti2O5 at Room Temperature and at 600℃ by DV-Xα Approach (DV-Xα 전산모사에 의한 Al2Ti2O5의 상온 및 600℃ 구조 분석)

  • Chang, Myung Chul
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.148-149
    • /
    • 2012
  • As one of zero-expansion coefficient materials $Al_2TiO_5$ ceramics was prepared and the thermal shock-resistance was investigated by using DV-X analysis. In this report the mechanism of thermal shock-resistance and low mechanical strength.

  • PDF

Effects of Aggregate and Curing Temperature on Strength Development of UP-MMA based Polymer Mortar under Sub-Zero Temperature (영하온도에서 UP-MMA 폴리머 모르타르의 강도 발현에 미치는 골재 및 양생온도의 영향)

  • Yeon, Kyu-Seok;Kim, Yong-Seong;Cha, Jin-Yun;Son, Seung-Wan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.5
    • /
    • pp.25-33
    • /
    • 2011
  • In this paper, the effects of aggregate and curing temperature on strength development characteristics of UP (Unsaturated Polyester)-MMA (Methyl Methacrylate) based polymer mortar under sub-zero temperature are experimentally investigated to provide a criterion for repair and production of precast products. The result showed that the setting time of the binder was 4 minutes at $20^{\circ}C$ whereas 35 minutes at $-20^{\circ}C$. The result also revealed that the compressive, flexural, and splitting tensile strengths of UP-MMA based polymer mortar significantly decreased as the aggregate and curing temperatures decreased. However, sufficient strengths which can be implemented in actual practices -36.6 MPa of compressive strength, 6.11 MPa of flexural strength, and 5.81 MPa of splitting tensile strength - were obtained even though both aggregate and curing temperatures were $-20^{\circ}C$. Strength development of polymer mortar is largely affected by curing temperature rather than aggregate temperature. It was found that the effects of aggregate temperature on strength development become smaller as the curing temperature becomes lower. Also, toughness, a ratio of compressive strength to flexural strength, increased from 3.5 to 5.9 as both aggregate and curing temperatures decreased from $20^{\circ}C$ to $-20^{\circ}C$.

Structure and Microwave Dielectric Characteristics of Ba6-3x(Sm1-yNdy)8+2x(Ti0.95Sn0.05)18O54 Ceramics as a Function Of Sintering Time

  • Li, Yi;Chen, Xiang Ming
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.4
    • /
    • pp.360-364
    • /
    • 2003
  • Effects of sintering time upon the structures and microwave dielectric characteristics of co-substituted $Ba_{6-3x}$/S $m_{8+}$2x/ $Ti_{18}$ $O_{54}$ ceramics (x=2/3) were investigated. Prolonged sintering had significant effects upon the qf value and temperature coefficient, and a high Qf value (10,600 GHz) was obtained in the present ceramics combined with high-$\varepsilon$ (80) and near-zero temperature coefficient.t..

1D Kinetics Model of NH3-Fed Solid Oxide Fuel Cell (암모니아 공급 고체산화물 연료전지의 1D 반응 모델)

  • VAN-TIEN GIAP;THAI-QUYEN QUACH;KOOK YOUNG AHN;YONGGYUN BAE;SUNYOUP LEE;YOUNG SANG KIM
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.6
    • /
    • pp.723-732
    • /
    • 2022
  • Cracking ammonia inside solid oxide fuel cell (SOFC) stack is a compact and simple way. To prevent sharp temperature fluctuation and increase cell efficiency, the decomposition reaction should be spread on whole cell area. This leading to a question that, how does anode thickness affect the conversion rate of ammonia and the cell voltage? Since the 0D model of SOFC is useful for system level simulation, how accurate is it to use equilibrium solver for internal ammonia cracking reaction? The 1D model of ammonia fed SOFC was used to simulate the diffusion and reaction of ammonia inside the anode electrode, then the partial pressure of hydrogen and steam at triple phase boundary was used for cell voltage calculation. The result shows that, the ammonia conversion rate increases and reaches saturated value as anode thickness increase, and the saturated thickness is bigger for lower operating temperature. The similar cell voltage between 1D and 0D models can be reached with NH3 conversion rate above 90%. The 0D model and 1D model of SOFC showed similar conversion rate at temperature over 750℃.

Effect of Heat Treatment on Microstructure, Mechanical Property and Corrosion Behavior of STS 440C Martensitic Stainless Steel (STS 440C 마르텐사이트계 스테인리스 강의 열처리에 따른 미세조직, 기계적 특성 및 부식 거동)

  • Kim, Mingu;Lee, Kwangmin
    • Korean Journal of Materials Research
    • /
    • v.31 no.1
    • /
    • pp.29-37
    • /
    • 2021
  • Martensitic stainless steel is commonly used in the medical implant instrument. The alloy has drawbacks in terms of strength and wear properties when applied to instruments with sharp parts. 440C STS alloy, with improved durability, is an alternative to replace 420 J2 STS. In the present study, the carbide precipitation, and mechanical and corrosion properties of STS 440C alloy are studied as a function of different heat treatments. The STS 440C alloy is first austenitized at different temperatures; this is immediately followed by oil quenching and sub-zero treatment. After sub-zero treatment, the alloy is tempered at low temperatures. The microstructures of the heat treated STS 440C alloy consist of martensite and retained austenite and carbides. Using EDX and SADP with a TEM, the precipitated carbides are identified as a Cr23C6 carbide with a size of 1 to 2 ㎛. The hardness of STS 440C alloy is improved by austenitization at 1,100 ℃ with sub-zero treatment and tempering at 200 ℃. The values of Ecorr and Icorr for STS 440C increase with austenitization temperature. Results can be explained by the dissolution of Cr-carbide and the increase in the retained austenite. Sub-zero treatment followed by tempering shows a little difference in the properties of potentiodynamic polarizations.

Plant Hardiness Zone Map in Korea and an Analysis of the Distribution of Evergreen Trees in Zone 7b

  • Suh, Jung Nam;Kang, Yun-Im;Choi, Youn Jung;Seo, Kyung Hye;Kim, Yong Hyun
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.5
    • /
    • pp.519-527
    • /
    • 2021
  • Background and objective: This study was conducted to establish a Plant Hardiness Zone (PHZ) map, investigate the effect of global warming on changes in PHZ, and elucidate the difference in the distribution of evergreen trees between the central and southern region within hardiness Zone 7b in Korea. Methods: Mean annual extreme minimum temperature (EMT) and related temperature fluctuation data for 40 years (1981 to 2020) in each of the meteorological observation points were extracted from the Open MET Data Portal of the Korea Meteorological Administration. Using EMT data from 60 meteorological observation points, PHZs were classified according to temperature range in the USDA Plant Hardiness Zone Map. Changes in PHZs for each decade related to the effects of global warming were analyzed. Temperature fluctuation before and after the day of EMT were analyzed for 4 areas of Seoul, Suwon, Suncheon, and Jinju falling under Zone 7b. For statistical analysis, descriptive statistics and ANOVA were performed using the IBM SPSS 22 Statistics software package. Results: Plant hardiness zones in Korea ranged from 6a to 9b. Over four decades, changes to warmer PHZ occurred in 10 areas, especially in colder ones. Based on the analysis of daily temperature fluctuation, the duration of sub-zero temperatures was at least 2 days in Seoul and Suwon, while daily maximum temperatures were above zero in Suncheon and Jinju before and after EMT day. Conclusion: It was found that the duration of sub-zero temperatures in a given area is an important factor affecting the distribution of evergreen trees in PHZ 7b.

Characteristics of Black Ice Using Thermal Imaging Camera (열화상카메라를 이용한 블랙아이스 특성 연구)

  • Kim, Seung-Jun;Yoon, Won-Sub;Kim, Yeon-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.873-882
    • /
    • 2021
  • In this study, a study was conducted to develop a system for predicting/responding to black ice occurring on roads in winter. Tests conditions were studied by making models of cement concrete pavement and asphalt concrete pavement. In order to freeze water on the manufactured model package, an tests was conducted at a temperature below zero using a freezer, and the freezing process was photographed using a thermal imaging camera. Black ice is generated when water is present on the road surface and the temperature is below freezing or the road surface temperature is below the dew point temperature. Under sub-zero conditions, the pavement, water, and ice were classified with a thermal imaging camera. As a result of the tests, it was possible to distinguish with a thermal imaging camera at a temperature below freezing in the same freezer due to the difference in the emissivity of the packaging, water, and ice. In the process of changing from water to ice during the tests, it was analyzed that ice and water were clearly distinguished by the thermal imaging camera due to the difference in emissivity and reflectance, so black ice could be predicted using the thermal imaging camera.

Possible Role of Disorder on Magnetostructural Transition in La1-xBaxMnO3

  • Kim, N.G.;Jung, J.H.
    • Journal of Magnetics
    • /
    • v.12 no.3
    • /
    • pp.103-107
    • /
    • 2007
  • Magnetic field induced structural transition has been systematically investigated for $La_{1-x}Ba_xMnO_3$ with the fine control of carrier doping $(0.15{\leq}x{\leq}0.20)$. Application of a magnetic field results in the suppression of the rhombohedral-orthorhombic transition temperature $(T_s)$ and the increase of insulator-metal transition temperature $(T_{MI})$. Near x = 0.17, where $T_S$ is similar to $T_{MI}$ at zero magnetic field, we found that the $T_S$ smoothly decreased with magnetic field even though it intersected the $T_{MI}$ near 3 T. Also, the magnetostructural phase diagram obtained from the temperature sweep and from the magnetic field sweep is not significantly modified. By comparing the magnetostructural transition in $La_{1-x}Sr_xMnO_3$, we have suggested that the large disorder originated from ionic size differences between La and Ba may weaken the sensitivity of the kinetic energy of $e_g$ electrons on the degree of lattice distortion in $La_{1-x}Ba_xMnO_3$.

Magnetic Properties of Transition Metal Doped La0.5Ca0.5(Mn0.98TM0.02)O3(TM=Cr, Ti) (전이금속을 치환한 란탄망간산화물계 La0.5Ca0.5(Mn0.98TM0.02)O3(TM=Cr, Ti)의 자성 특성 연구)

  • Kang, J.H.;Jun, S.J.;Park, J.S.;Lee, Y.P.;Lee, Y.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.1
    • /
    • pp.14-17
    • /
    • 2007
  • Magnetic properties of transition metal doped $La_{0.5}Ca_{0.5}(Mn_{0.98}TM_{0.02})O_3$(TM=Cr and Ti) are studied. The samples are synthesized by the conventional solid-state method. Using vibrating sample magnetometer magnetization-temperature measurement were carried out with zero field cooling and field cooling at 50 Oe. Cr-doped sample shows cluster or spin glass like behavior while Ti doped does not. Curie temperature obtained were decreased from that of LCMO(245.5 K). Curie temperatures of Cr-doped and Ti-doped samples are 235.5 K and 232.7 K, respectively. The temperature-dependent coercivity $H_c(T)$ was also measured. The coercive force continuously decreases with the substitution of Cr and Ti, The result can be understood in terms of the interaction between defect and domain wall.

The Magnetic Properties of Amorphous F$e_32Ni_36Cr_14P_12B_6$ (비정질 F$e_32Ni_36Cr_14P_12B_6$의 자기적 성질)

  • Kim, Jung-Gi
    • Korean Journal of Materials Research
    • /
    • v.2 no.4
    • /
    • pp.293-297
    • /
    • 1992
  • The magnetic properties of the amorphous Fe/sub 32/Ni/sub 36/Cr/sub 14/P/sub 12/B/sub 6/ has been studied by Mossbauer spectroscopy in the temperature range of 88-400K. The analysis of the spectrum of B8K, the magnetic hyperfine field and quadrupole splitting are found to be 140.5kOe and almost zero, which means that the magnetic hyperfine field is randomly oriented with respect to the principal axes of the electric field gradient, respectively. The values of quadrupole splitting in paramagnetic phase with Tc=280K are independent on the changes of temperature. Debye temperature is found to be about 288k from the analysis of recoilless fraction.

  • PDF