• Title/Summary/Keyword: Sub-surface crack

Search Result 108, Processing Time 0.03 seconds

A Study on the Development of an Automated Pavement Crack Sealer (도로면 크랙실링 자동화 로봇의 프로토타입 개발에 관한 연구)

  • Lee Jeong-Ho;Yu Hyun-Seok;Kim Young-Suk;Lee Jun-Bok;Cho Moon-Young
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.2 s.18
    • /
    • pp.162-171
    • /
    • 2004
  • Crack sealing is a maintenance procedure that is commonly used to reduce pavement degradation. If cracks in pavements are not sealed, surface water penetration can reduce the strength of the sub-base layers, which can result in increased deflections of the pavement. Reduced strength of the sub-base also accelerates the deterioration of the surface, due to development of greater cracking and potholes. Crack sealing is performed to reduce water and debris penetration, thereby helping to maintain pavement structural capacity and limiting future degradation. The process of sealing cracks in pavements is however dangerous, costly, and labor-intensive operation. Labor turnover and training are increasing problems related to crack sealing crews, and as traffic volumes increase. Automating crack sealing can reduce labor and road user costs, improve work quality, and decrease worker exposure to roadway hazards. The main objective of this research is to develop an automated system for sealing cracks in pavement. Extension of the algorithms and tools presented in this research is also recommended for future study.

Effects of Outside Repair Welding on the Crack Growth in the Surge Nozzle Weld on the Hot Leg Side in a Nuclear Power Plant (외면 보수 용접이 원전 고온관 밀림노즐에서의 결함성장에 미치는 영향)

  • Na, Kyung-Hwan;Yun, Eun-Sub;Park, Young-Sheop
    • Journal of Welding and Joining
    • /
    • v.29 no.2
    • /
    • pp.34-39
    • /
    • 2011
  • Nickel-based austenitic alloys such as Alloy 82 and 182 had been employed as the weld metals in nuclear power plants (NPPs) due to their high corrosion resistance as well as good mechanical properties. However, since the 2000s, the occurrence of primary water stress corrosion cracking has been reported in conjunction with these alloys in domestic and oversea NPPs. In the present work, we assumed an imaginary crack at the inner surface of a surge nozzle weld that had previously experienced the outside repair welding, and constructed its finite element model. Finite element analysis was performed with respect to the heat transfer, and then to the residual stress for obtaining the total applied stress distributions. These stress distributions were finally converted to the stress intensity factors for estimating crack growth rate. From the comparison of crack growth rate curves for the cases of no repair welding and outside repair welding, it was found that the outside repair welding did not exhibit negative effect on the crack growth for the surge nozzle under consideration in this work; in both cases, the cracks stopped growing before they became the through-wall cracks.

Solvothermal Synthesis and Characterization of Cu3(BTC)2 Tubular Membranes Using Surface Modified Supports (표면 개질된 지지체를 이용한 Cu3(BTC)2 튜브형 분리막의 용매열 합성 및 특성분석)

  • Noh, Seung-Jun;Kim, Jinsoo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.214-218
    • /
    • 2014
  • In this study, nanoporous $Cu_3(BTC)_2$ membranes were synthesized on macroporous alumina tube supports by solvothermal method. It is very difficult to prepare uniform and crack-free $Cu_3(BTC)_2$ layer on macroporous alumina support by in situ solvothermal method. In this study, continuous and crack-free $Cu_3(BTC)_2$ tubular membranes could be obtained by in situ solvothermal process after surface modification of alumina support. The surface modification was conducted by spraying Cu precursor solution on the alumina support heated at $200^{\circ}C$. The prepared $Cu_3(BTC)_2$ tubular membranes were characterized by XRD, FE-SEM and gas permeation experiments. $H_2$ permeance through $5{\mu}m$ thick $Cu_3(BTC)_2$ tubular membrane was calculated to be $7.8{\times}10^{-7}mol/s{\cdot}m^2{\cdot}Pa$ by single gas permeation test, with the ideal selectivities of $H_2/N_2=11.94$, and $H_2/CO_2=12.82$.

Experimental Research of Change in Magnetic Flux Density Due to Load for Measuring KI (응력확대계수측정을 위한 하중에 의한 자속밀도변화의 실험적 연구)

  • Lee, Jeong-Hee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.1
    • /
    • pp.129-132
    • /
    • 2004
  • In order to determine the effective way of measuring the Mode I stress intensity factor, $K_I$, by means of the alternating current potential drop(ACPD) technique for a material containing a two-dimensional surface crack, the change in magnetic flux density above the cracked specimen surface was studied experimentally. The change in magnetic flux in the air above the cracked specimen made of aluminum alloy is measured by changing the load by four-point bending. The magnetic flux in the air is almost not changed by increasing the load in teh specimen. The change in potential drop due to load is not caused by the change in electro-motive force induced in the coiled measuring system. This experimental result agree to the result of theoretical analysis in reference 7).

  • PDF

Static Creep Characteristics of AI-10wt% TiCp Composites (Al-10wt% TiCp복합재료의 정적 크립특성)

  • Rhim, J.K.;Park, J.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.3
    • /
    • pp.159-165
    • /
    • 1993
  • Creep tests of the TiC particulate reinforced Al composite have been conducted in the temperature ranges from 200 to $500^{\circ}C$. The steady-state cree rate of the composite depended strongly on the temperature and ap' plied stress. The stress exponent for the steady state creep rate of the composites was approximately 17.5 and the activation anergy was calculated to be 390KJ/mol. The steady-state creep equation could be written as $\acute{\varepsilon}_{ss}$ $$(s^{-1})=1.5{\times}10^{-9}\;{\sigma}^{17.5}\exp(-390000/RT)$$. Fracture surface examination showed that the fracture mode of the particulate reinforced composite was ductile by plastic tearing of the aluminum matrix and TiC particle interfaces were offered as sites for crack.

  • PDF

Characteristics of GMA Weld Zone on TiO2 Different Component Flux Cored Wire for S500 Grade Steel (TiO2 성분 플럭스충진와이어에 따른 S500강의 GMA 용접부 특성)

  • Yoo, Cheol;Ko, Young-Bong;Park, Kyeung-Chae
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.6
    • /
    • pp.335-342
    • /
    • 2015
  • Recently, the production of oil and gas at the arctic ocean and offshore has been growing. Accordingly, S500 steel with the high tensile strength and excellent toughness has been used and flux cored wire that can be welded to the S500 has been required. In this study, we carried out observation of microstructures, mechanical properties and CTOD (crack tip openning displacement) in the weld zone that GMA (gas metal arc) welded with different component of $TiO_2$ flux core wire (the main components, rutile or Ti-slag) for S500 steel. Weld zone produced with Ti-slag flux cored wire has formed a enough acicular ferrite and shown excellent impact toughness at $-40^{\circ}C$, tensile strength at room temperature and CTOD at $-20^{\circ}C$. As a result, the developed flux cored wire was suitable for S500 steel.

Development and Evaluation of Silicon Passive Layer Dosimeter Based Lead-Monoxide for Measuring Skin Dose (피부선량 측정을 위한 Lead-Monoxide 기반의 Silicon Passive layer PbO 선량계 개발 및 평가)

  • Yang, Seung-Woo;Han, Moo-Jae;Jung, Jae-Hoon;Bae, Sang-Il;Moon, Young-Min;Park, Sung-Kwang;Kim, Jin-Young
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.781-788
    • /
    • 2021
  • Due to the high sensitivity to radiation, excessive exposure needs to be prevented by accurately measuring the dose irradiated to the skin during radiation therapy. Although clinical trials use dosimeters such as film, OSLD, TLD, glass dosimeter, etc. to measure skin dose, these dosimeters have difficulty in accurate dosimetry on skin curves. In this study, to solve these problems, we developed a skin dosimeter that can be attached according to human flexion and evaluated its response characteristics. For the manufacture of the dosimeter, lead oxide (PbO) with high atomic number (ZPb: 82, ZO: 8) and density (9.53 g/cm3) and silicon binders that can bend according to human flexion were used. In the case of a dosimeter made of PbO material, the performance degradation has been prevented by using parylene and others due to the presence of degradation due to oxidation, but the previously used parylene is affected by bending, so a new form of passive layer was produced and applied to the skin dosimeter. The characteristic evaluation of the skin dosimeter was evaluated by analyzing SEM, reproducibility, and linearity. Through SEM analysis, bending was evaluated, reproducibility and linearity at 6 MeV energy were evaluated, and applicability was assessed with a skin dosimeter. As a result of observing the dosimeter surface through SEM analysis, the parylene passive layer PbO dosimeter with the positive layer raised to the parylene produced cracks on the surface when bent. On the other hand, no crack was observed in the silicon passive layer PbO dosimeter, which was raised to silicon passive layer. In the reproducibility measurement results, the RSD of the silicon passive layer PbO dosimeter was 1.47% which satisfied the evaluation criteria RSD 1.5% and the linearity evaluation results showed the R2 value of 0.9990, which satisfied the evaluation criteria R2 9990. The silicon passive layer PbO dosimeter was evaluated to be applicable to skin dosimeters by demonstrating high signal stability, precision, and accuracy in reproducibility and linearity, without cracking due to bending.

Mitigating Metal-dissolution in a High-voltage 15 wt% Si-Graphite‖Li-rich Layered Oxide Full-Cell Utilizing Fluorinated Dual-Additives

  • Kim, Jaeram;Kwak, Sehyun;Pham, Hieu Quang;Jo, Hyuntak;Jeon, Do-Man;Yang, A-Reum;Song, Seung-Wan
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.269-278
    • /
    • 2022
  • Utilization of high-voltage electrolyte additive(s) at a small fraction is a cost-effective strategy for a good solid electrolyte interphase (SEI) formation and performance improvement of a lithium-rich layered oxide-based high-energy lithium-ion cell by avoiding the occurrence of metal-dissolution that is one of the failure modes. To mitigate metal-dissolution, we explored fluorinated dual-additives of fluoroethylene carbonate (FEC) and di(2,2,2-trifluoroethyl)carbonate (DFDEC) for building-up of a good SEI in a 4.7 V full-cell that consists of high-capacity silicon-graphite composite (15 wt% Si/C/CF/C-graphite) anode and Li1.13Mn0.463Ni0.203Co0.203O2 (LMNC) cathode. The full-cell including optimum fractions of dual-additives shows increased capacity to 228 mAhg-1 at 0.2C and improved performance from the one in the base electrolyte. Surface analysis results find that the SEI stabilization of LMNC cathode induced by dual-additives leads to a suppression of soluble Mn2+-O formation at cathode surface, mitigating metal-dissolution event and crack formation as well as structural degradation. The SEI and structure of Si/C/CF/C-graphite anode is also stabilized by the effects of dual-additives, contributing to performance improvement. The data give insight into a basic understanding of cathode-electrolyte and anode-electrolyte interfacial processes and cathode-anode interaction that are critical factors affecting full-cell performance.

Residual Stress and Elastic Modulus of Y2O3 Coating Deposited by EB-PVD and its Effects on Surface Crack Formation

  • Kim, Dae-Min;Han, Yoon-Soo;Kim, Seongwon;Oh, Yoon-Suk;Lim, Dae-Soon;Kim, Hyung-Tae;Lee, Sung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.410-416
    • /
    • 2015
  • Recently, a new $Y_2O_3$ coating deposited using the EB-PVD method has been developed for erosion resistant applications in fluorocarbon plasma environments. In this study, surface crack formation in the $Y_2O_3$ coating has been analyzed in terms of residual stress and elastic modulus. The coating, deposited on silicon substrate at temperatures higher than $600^{\circ}C$, showed itself to be sound, without surface cracks. When the residual stress of the coating was measured using the Stoney formula, it was found to be considerably lower than the value calculated using the elastic modulus and thermal expansion coefficient of bulk $Y_2O_3$. In addition, amorphous $SiO_2$ and crystalline $Al_2O_3$ coatings were similarly prepared and their residual stresses were compared to the calculated values. From nano-indentation measurement, the elastic modulus of the $Y_2O_3$ coating in the direction parallel to the coating surface was found to be lower than that in the normal direction. The lower modulus in the parallel direction was confirmed independently using the load-deflection curves of a micro-cantilever made of $Y_2O_3$ coating and from the average residual stress-temperature curve of the coated sample. The elastic modulus in these experiments was around 33 ~ 35 GPa, which is much lower than that of a sintered bulk sample. Thus, this low elastic modulus, which may come from the columnar feather-like structure of the coating, contributed to decreasing the average residual tensile stress. Finally, in terms of toughness and thermal cycling stability, the implications of the lowered elastic modulus are discussed.

A study on fatigue properties of plasma carburized low carbon Cr-Mo steel (플라즈마 침탄한 저탄소 Cr-Mo강의 피로특성에 관한 연구)

  • Park, Kyeong-Bong;Sin, Dong-Myung;Lee, Chang-Youl;Lee, Ktung-Sub
    • Korean Journal of Materials Research
    • /
    • v.10 no.7
    • /
    • pp.505-514
    • /
    • 2000
  • The carburizing behavior and fatigue properties of the plasma carburized low carbon Cr-Mo steel(0.176C-1.014Cr-0.387Mo) have been investigated. The effective case depth in plasma carburized steel increased up to 50% in comparison with that of gas carburizing, and this case depth increased with the increasing surface carbon content. With increasing time in plasma carburizing, the surface carbon content increased but its increasing rate decreased. Fatigue properties were studied in terms of microstructure, case depth, retained austenite and residual stress near the surface. The fatigue limit of the plasma carburized steel was higher than that of gas carburized one. The initiation of microcracks and initial crack propagation were retarded due to a relatively little surface and internal oxidation layer in plasma carburized steel. Fractography showed the crack initiated at the surface, and transgranular fracture at surface layer was more predominant in plasma carburized steel compared to that of gas carburized steel.

  • PDF