• Title/Summary/Keyword: Sub-division method

Search Result 859, Processing Time 0.029 seconds

Magnetic Properties and Hyperfine Interaction of BaSrCo2(Fe1-xAlx)12O22 Hexaferrite

  • Lim, Jung Tae;Kim, Chul Sung
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1679-1683
    • /
    • 2018
  • Polycrystalline $BaSrCo_2(Fe_{1-x}Al_x)_{12}O_{22}$ (x = 0.00, 0.01, 0.05, and 0.10) samples were synthesized by polymerizable complex method. Based on the Rietveld refinement, crystal structures of the samples were found to be single-phased and determined to be rhombohedral with space group of R-3m. The hysteresis curves of the samples were measured under 15 kOe at various temperatures ranging from 4.2 and 295 K. It shows that they were not saturated with increasing Al ion contents due to the reduction of magnetic anisotropy. $M_{15kOe}$ was decreased with increasing Al ions contents. We expect that non-magnetic Al ions preferentially occupy the up-spin site of $18h_{VI}$, $3b_{VI}$, and $3a_{VI}$. The $M{\ddot{o}}ssbauer$ spectra of the samples were obtained at 295 K, and analyzed with sixsextets for Fe sites corresponding to the Y-type hexaferrite crystallography sites. The <$E_Q$> shows abrupt changes, and the <$H_{hf}$> shows abrupt decreases around x = 0.05 due to the coexistence of magnetic secondary phases.

Effect of packing structure on anisotropic effective thermal conductivity of thin ceramic pebble bed

  • Wang, Shuang;Wang, Shuai;Wu, Bowen;Lu, Yuelin;Zhang, Kefan;Chen, Hongli
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2174-2183
    • /
    • 2021
  • Helium cooled solid breeder blanket as an important blanket candidate of the Tokamak fusion reactor uses ceramic pebble bed for tritium breeding. Considering the poor effective thermal conductivity of the ceramic breeder pebble bed, thin structure of tritium breeder pebble bed is usually adopted in the blanket design. The container wall has a great influence on the thin pebble bed packing structure, especially for the assembly of mono-sized particles, and thin pebble bed will appear anisotropic effective thermal conductivity phenomenon. In this paper, thin ceramic pebble beds composed of 1 mm diameter Li4SiO4 particles are generated by the EDEM 2.7. The effective thermal conductivity of different thickness pebble beds in the three-dimensional directions are analyzed by three-dimensional thermal network method. It is observed that thin Li4SiO4 pebble bed showing anisotropic effective thermal conductivity under the practical design size. Normally, the effective thermal conductivity along the bed vertical direction is higher than the horizontal direction due to the gravity effect. As the thickness increases from 10 mm to 40 mm, the effective thermal conductivity of the pebble bed gradually increases.

ENUMERATION OF GRAPHS AND THE CHARACTERISTIC POLYNOMIAL OF THE HYPERPLANE ARRANGEMENTS 𝒥n

  • Song, Joungmin
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.5
    • /
    • pp.1595-1604
    • /
    • 2017
  • We give a complete formula for the characteristic polynomial of hyperplane arrangements ${\mathcal{J}}_n$ consisting of the hyperplanes $x_i+x_j=1$, $x_k=0$, $x_l=1$, $1{\leq}i$, j, k, $l{\leq}n$. The formula is obtained by associating hyperplane arrangements with graphs, and then enumerating central graphs via generating functions for the number of bipartite graphs of given order, size and number of connected components.

Link Adaptation and Selection Method for OFDM Based Wireless Relay Networks

  • Can, Basak;Yomo, Hiroyuki;Carvalho, Elisabeth De
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.118-127
    • /
    • 2007
  • We propose a link adaptation and selection method for the links constituting an orthogonal frequency division multiplexing (OFDM) based wireless relay network. The proposed link adaptation and selection method selects the forwarding, modulation, and channel coding schemes providing the highest end-to-end throughput and decides whether to use the relay or not. The link adaptation and selection is done for each sub-channel based on instantaneous signal to interference plus noise ratio (SINR) conditions in the source-to-destination, source-to-relay and relay-to-destination links. The considered forwarding schemes are amplify and forward (AF) and simple adaptive decode and forward (DF). Efficient adaptive modulation and coding decision rules are provided for various relaying schemes. The proposed end-to-end link adaptation and selection method ensures that the end-to-end throughput is always larger than or equal to that of transmissions without relay and non-adaptive relayed transmissions. Our evaluations show that over the region where relaying improves the end-to-end throughput, the DF scheme provides significant throughput gain over the AF scheme provided that the error propagation is avoided via error detection techniques. We provide a frame structure to enable the proposed link adaptation and selection method for orthogonal frequency division multiple access (OFDMA)-time division duplex relay networks based on the IEEE 802.16e standard.

A New SPW Scheme for PAPR Reduction in OFDM Systems by Using Genetic Algorithm (유전자 알고리즘을 적용한 SPW에 의한 새로운 OFDM 시스템 PAPR 감소 기법)

  • Kim Sung-Soo;Kim Myoung-Je;Kee Jong-Hae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.11 s.102
    • /
    • pp.1131-1137
    • /
    • 2005
  • An orthogonal frequency division multiplexing(OFDM) system has the problem of peak-to-average power ratio (PAPR) due to the overlapping phenomena of many sub-carriers. In order to improve the performance of PAPR, we propose in this paper a new genetic sub-block phase weighting(GA-SPW) using the SPW technique. Not only the selecting mapping(SLM) and the partial sequence(PTS) but also the previously proposed SPW becomes more effective as the number of sub-blocks and phase elements increases. However, all of them have limitation on the number of sub-blocks since the searching repetition increases exponentially as the number of sub-blocks increases. Therefore, in this research, a new GA SPW is proposed to reduce the amount of calculation by using Genetic algorithm(GA). In the proposed method, the number of calculations involved in the iterative phase searching yields to depend on the number of population and generation not on the number of sub-blocks and phase elements. The superiority of the proposed method is presented in the experimental results and analysis.

Reduction of VOCs and the Antibacterial Effect of a Visible-Light Responsive Polydopamine (PDA) Layer-TiO2 on Glass Fiber Fabric (Polydopamine (PDA)-TiO2 코팅 유리섬유 직물을 이용한 VOCs의 저감 성능 및 항균성 연구)

  • Park, Seo-Hyun;Choi, Yein;Lee, Hong Joo;Park, Chan-gyu
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.6
    • /
    • pp.540-547
    • /
    • 2021
  • Background: Indoor air pollutants are caused by a number of factors, such as coming in from the outside or being generated by internal activities. Typical indoor air pollutants include nitrogen dioxide and carbon monoxide from household items such as heating appliances and volatile organic compounds from building materials. In addition there is carbon dioxide from human breathing and bacteria from speaking, coughing, and sneezing. Objectives: According to recent research results, most indoor air pollution is known to be greatly affected by internal factors such as burning (biomass for cooking) and various pollutants. These pollutants can have a fatal effect on the human body due to a lack of ventilation facilities. Methods: We fabricated a polydopamine (PDA) layer with Ti substrates as a coating on supported glass fiber fabric to enhance its photo-activity. The PDA layer with TiO2 was covalently attached to glass fiber fabric using the drop-casting method. The roughness and functional groups of the surface of the Ti substrate/PDA coated glass fiber fabric were verified through infrared imaging microscopy and field emission scanning electron microscopy (FE-SEM). The obtained hybrid Ti substrate/PDA coated glass fiber fabric was investigated for photocatalytic activity by the removal of ammonia and an epidermal Staphylococcus aureus reduction test with lamp (250 nm, 405 nm wavelength) at 24℃. Results: Antibacterial properties were found to reduce epidermal staphylococcus aureus in the Ti substrate/PDA coated glass fiber fabric under 405 nm after three hours. In addition, the Ti substrate/PDA coated glass fiber fabric of VOC reduction rate for ammonia was 50% under 405 nm after 30 min. Conclusions: An electron-hole pair due to photoexcitation is generated in the PDA layer and transferred to the conduction band of TiO2. This generates a superoxide radical that degrades ammonia and removes epidermal Staphylococcus aureus.

Evaluation of Ammonia Emission Coefficient according to the use of Compound Fertilizers when Cultivating Apples and Pears in Orchards (과수원에서 사과 및 배 재배 시 복합비료 시용에 따른 암모니아 배출계수 평가)

  • Kim, Min-Wook;Hong, Sung-Chang;Yu, Seon-Young;Kim, Jin-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.366-372
    • /
    • 2021
  • BACKGROUND: Ammonia is known as a precursor to fine particulate matter, and according to CAPSS, annual ammonia emissions in the agricultural sector were 249,777 tons as of 2018, accounting for about 79.0% of Korea's total ammonia emissions. In particular, ammonia emissions from agricultural land increased by 19,566 tons (10.2%) compared to the previous year. The Ministry of Environment is setting emission statistics using the ammonia emission coefficient developed in Korea in 2008, but researchers in the agricultural field regard it as a coefficient that does not reflect the reality of Korea's agricultural environment. Accordingly, in order to develop ammonia emission coefficients from the cultivation of apples and pears, Korea's representative fruit type, test agricultural land was set in Iksan, Jeollabuk-do. METHODS AND RESULTS: This study attempted to obtain the ammonia emission coefficient by the treatment of the composite fertilizer (N-P2O5-K2O=12-7-9), and the flux was measured using a dynamic flow-through chamber method. As for the chamber, a total of 12 chambers were installed repeatedly in 4 zones and used to develop emission coefficients. Using compound fertilizers during fruit tree cultivation, the ammonia emission coefficient was evaluated as 10.4 kg NH3/ton for pears and 15.3 kg NH3/ton for apples. The reason why the ammonia emission coefficient according to the use of composite fertilizers was calculated higher for apple cultivation is believed to be due to the relatively high pH concentration of apple orchard soil. CONCLUSION(S): This study may provide basic data for upgrading the ammonia emission coefficient when using composite fertilizers in agricultural land. In the future, it might be necessary to upgrade the calculation of emissions through the development of ammonia and fine particulate matter emission coefficients considering the agricultural environment of Korea.

Mössbauer Study of Silver Nanoparticle Coated Perovskites La0.7Sr0.3Co0.3Fe0.7O3-δ (LSCF) (은(Ag) 나노입자가 코팅된 페롭스카이트 La0.7Sr0.3Co0.3Fe0.7O3-δ의 Mössbauer 분광연구)

  • Uhm, Young-Rang;Rhee, Chang-Kyu;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.2
    • /
    • pp.37-41
    • /
    • 2012
  • The Ag nanoparticles attached $La_{0.7}Sr_{0.3}Co_{0.3}Fe_{0.7}O_{3-{\delta}}$ (LSCF) perovskites were prepared by plasma method. The Ag nanoparticles with size of several nanometers deposited from the Ag target were coated on the surface of LSCF powders with size range from 0.2 to 3 ${\mu}m$. The agglomeration of Ag particles annealed at $800^{\circ}C$ under inert gas of Ar were rarely observed. The inter-diffusion between surface Ag and core LSCF is effectively strong to prevent aggregation of Ag nanoparticles. The wave number of FT-IR spectra for LSCF were largely shifted as the concentration of Ag on LSCF up to 2.11 wt.%. The ionic states of irons in LSCF were measured by M$\ddot{o}$ssbauer spectroscopy. The small amount of $Fe^{4+}$ ions are converted to $Fe^{3+}$ ions after Ag nanopartcles were coated on LSCF.

Particle Size Control by the Addition of PVA and HNO3 in γ-Al2O3 Synthesis Using by Sol-Gel Method (졸-겔법을 이용한 γ-Al2O3 합성 시 PVA와 HNO3 첨가에 따른 입자크기 제어)

  • Um, Myeong-Heon;Kim, Na-Eun;Ha, Beom-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.537-543
    • /
    • 2019
  • Alumina(Al2O3) is a ceramic material used in industry with a range of particle sizes and characteristics. In this study, a boehmite sol was prepared by a hydrolysis and peptizing process using the Sol-Gel method from aluminum isopropoxide (AIP). γ-Al2O3 was prepared by drying and calcining. To prevent particle agglomeration during the manufacturing process, four kinds of polyvinyl alcohol (PVA) with molecular weights of 9,000~10,000, 31,000~50,000, 89,000~98,000, and 130,000 were added and three concentrations of HNO3 (0.1, 0.3, 0.5 molar ratio) were added to determine their effects on the particles. The crystal structure, composition, particle size and shape of the prepared γ-Al2O3 were confirmed through x-ray diffraction (XRD), x-ray fluorescence analyzer (XRF), particle size analyzer (PSA), and field emission scanning electron microscopy (FE-SEM). As a result, γ-Al2O3 with a purity of approximately 98.2% was synthesized, and the particle size decreased and the uniformity increased with increasing ratio of HNO3 addition and PVA molecular weight. From these results, the particle size can be controlled during the manufacturing process of γ-Al2O3 by controlling the addition ratio of PVA and HNO3.

TiO2 Photocatalytic Reaction on Glass Fiber for Total Organic Carbon Analysis (총유기탄소 분석을 위한 유리섬유를 이용한 이산화티타늄 광촉매 반응)

  • Park, Buem Keun;Lee, Young-Jin;Shin, Jeong Hee;Paik, Jong-Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.102-106
    • /
    • 2022
  • Currently, the demand for real-time monitoring of water quality has increased dramatically. Total organic carbon (TOC) analysis is a suitable method for real-time analysis compared with conventional biochemical oxygen demand (BOD) and chemical oxygen demand (COD) methods in terms of analysis time. However, this method is expensive because of the complicated internal processes involved. The photocatalytic titanium dioxide (TiO2)-based TOC method is simpler as it omits more than three preprocessing steps. This is because it reacts only with organic carbon (OC) without extra processes. We optimized the rate between the TiO2 photocatalyst and binder solution and the TiO2 concentration. The efficiency was investigated under 365 nm UV exposure onto a TiO2 coated substrate. The optimized conditions were sufficient to apply a real-time monitoring system for water quality with a short reaction time (within 10 min). We expect that it can be applied in a wide range of water quality monitoring industries.