• Title/Summary/Keyword: Sub pixel algorithm

Search Result 108, Processing Time 0.029 seconds

A Fast Search Algorithm for Sub-Pixel Motion Estimation (부화소 움직임 추정을 위한 고속 탐색 기법)

  • Park, Dong-Kyun;Jo, Seong-Hyeon;Cho, Hyo-Moon;Lee, Jong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.26-28
    • /
    • 2007
  • The motion estimation is the most important technique in the image compression of the video standards. In the case of next generation standards in the video codec as H.264, a high compression-efficiency can be also obtained by using a motion compensation. To obtain the accurate motion search, a motion estimation should be achieved up to 1/2 pixel and 1/4 pixel uiuts. To do this, the computational complexity is increased although the image compression rate is increased. Therefore, in this paper, we propose the advanced sub-pixel block matching algorithm to reduce the computational complexity by using a statistical characteristics of SAD(Sum of Absolute Difference). Generally, the probability of the minimum SAD values is high when searching point is in the distance 1 from the reference point. Thus, we reduced the searching area and then we can overcome the computational complexity problem. The main concept of proposed algorithm, which based on TSS(Three Step Search) method, first we find three minimum SAD points which is in integer distance unit, and then, in second step, the optimal point is in 1/2 pixel unit either between the most minimum SAD value point and the second minimum SAD point or between the most minimum SAD value point and the third minimum SAD point In third step, after finding the smallest SAD value between two SAD values on 1/2 pixel unit, the final optimized point is between the most minimum SAD value and the result value of the third step, in 1/2 pixel unit i.e., 1/4 pixel unit in totally. The conventional TSS method needs an eight.. search points in the sub-pixel steps in 1/2 pixel unit and also an eight search points in 1/4 pixel, to detect the optimal point. However, in proposed algorithm, only total five search points are needed. In the result. 23 % improvement of processing speed is obtained.

  • PDF

Measurements of Impervious Surfaces - per-pixel, sub-pixel, and object-oriented classification -

  • Kang, Min Jo;Mesev, Victor;Kim, Won Kyung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.303-319
    • /
    • 2015
  • The objectives of this paper are to measure surface imperviousness using three different classification methods: per-pixel, sub-pixel, and object-oriented classification. They are tested on high-spatial resolution QuickBird data at 2.4 meters (four spectral bands and three principal component bands) as well as a medium-spatial resolution Landsat TM image at 30 meters. To measure impervious surfaces, we selected 30 sample sites with different land uses and residential densities across image representing the city of Phoenix, Arizona, USA. For per-pixel an unsupervised classification is first conducted to provide prior knowledge on the possible candidate spectral classes, and then a supervised classification is performed using the maximum-likelihood rule. For sub-pixel classification, a Linear Spectral Mixture Analysis (LSMA) is used to disentangle land cover information from mixed pixels. For object-oriented classification several different sets of scale parameters and expert decision rules are implemented, including a nearest neighbor classifier. The results from these three methods show that the object-oriented approach (accuracy of 91%) provides more accurate results than those achieved by per-pixel algorithm (accuracy of 67% and 83% using Landsat TM and QuickBird, respectively). It is also clear that sub-pixel algorithm gives more accurate results (accuracy of 87%) in case of intensive and dense urban areas using medium-resolution imagery.

Sub-Pixel Analysis of Hyperspectral Image Using Linear Spectral Mixing Model and Convex Geometry Concept

  • Kim, Dae-Sung;Kim, Yong-Il;Lim, Young-Jae
    • Korean Journal of Geomatics
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • In the middle-resolution remote sensing, the Ground Sampled Distance (GSD) that the detector senses and samples is generally larger than the actual size of the objects (or materials) of interest, and so several objects are embedded in a single pixel. In this case, as it is impossible to detect these objects by the conventional spatial-based image processing techniques, it has to be carried out at sub-pixel level through spectral properties. In this paper, we explain the sub-pixel analysis algorithm, also known as the Linear Spectral Mixing (LSM) model, which has been experimented using the Hyperion data. To find Endmembers used as the prior knowledge for LSM model, we applied the concept of the convex geometry on the two-dimensional scatter plot. The Atmospheric Correction and Minimum Noise Fraction techniques are presented for the pre-processing of Hyperion data. As LSM model is the simplest approach in sub-pixel analysis, the results of our experiment is not good. But we intend to say that the sub-pixel analysis shows much more information in comparison with the image classification.

  • PDF

Sub-pixel Point Spread function Estimation for Fully Digital Auto-Focusing System (완전디지털 자동초점 시스템 구현을 위한 부화소단위 점확산함수 추정)

  • 황성현;신정호;백준기
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1727-1730
    • /
    • 2003
  • In this paper we propose a sub-pixel point spread function (PSF) estimation method for a fully digital auto-focusing system. We assume that the amount of out-of-focus is the same along the concentric circle. In order to estimate the accurate PSF, sub-pixel information is considered in the proposed PSF estimation procedure. The feasibility of the proposed algorithm is experimentally demonstrated.

  • PDF

Super-Resolution Algorithm by Motion Estimation with Sub-Pixel Accuracy using 6-Tap FIR Filter (6-Tap FIR 필터를 이용한 부화소 단위 움직임 추정을 통한 초해상도 기법)

  • Kwon, Soon-Chan;Yoo, Ji-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6A
    • /
    • pp.464-472
    • /
    • 2012
  • In this paper, we propose a new super-resolution algorithm that uses successive frames by applying the block matching motion estimation algorithm. Usually, single frame super-resolution algorithms are based on probability or discrete wavelet transform (DWT) approach to extract high-frequency components of the input image, but only limited information is available for these algorithms. To solve this problem, various multiple-frame based super-resolution algorithms are proposed. The accuracy of registration between frames is a very important factor for the good performance of an algorithm. We therefore propose an algorithm using 6-Tap FIR filter to increase the accuracy of the image registration with sub-pixel unit. Proposed algorithm shows better performance than other conventional interpolation based algorithms such as nearest neighborhood, bi-linear and bi-cubic methods and results in about the same image quality as DWT based super-resolution algorithm.

Sub-pixel Motion Estimation Algorithm with Low Computation Complexity for H.264 Video Compression (H.264 동영상 압축을 위한 낮은 복잡도를 갖는 부 화소 단위에서의 움직임 추정)

  • Lee, Yun-Hwa;Shin, Hyun-Chul
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.639-642
    • /
    • 2005
  • Motion Estimation(ME) is an important part of video compression, because it requires a large amount of computation. Half-pixel and quarter-pixel motion estimation allows high video compression rates but it also has high computation complexity. In this paper we suggest a new and efficient motion estimation algorithm for half-pixel and quarter-pixel motion estimation using SAD values. In the method, an integer-pixel motion vector is found and then only three neighboring points of the integer-pixel motion vector is evaluated to find the half-pixel motion vector. The quarter-pixel motion vector is also found by using a similar method. Experimental results of our method shows 20% reduction in computation time, when compared with those of a conventional method, while producing same quality motion vectors.

  • PDF

Improved Parallel Thinning Algorithm for Fingerprint image Processing (지문영상 처리를 위한 개선된 병렬 세선화 알고리즘)

  • 권준식
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.3
    • /
    • pp.73-81
    • /
    • 2004
  • To extract the creditable features in fingerprint image, many people use the thinning algorithm that has a very important position in the preprocessing. In this paper, we propose the robust parallel thinning algorithm that can preserve the connectivity of the binarized fingerprint image, make the thinnest skeleton with 1-pixel width and get near to the medial axis extremely. The proposed thinning method repeats three sub-iterations. The first sub-iteration takes off only the outer boundary pixel by using the interior points. To extract the one side skeletons, the second sub-iteration finds the skeletons with 2-pixel width. The third sub-iteration prunes the needless pixels with 2-pixel width existing in the obtained skeletons and then the proposed thinning algorithm has the robustness against the rotation and noise and can make the balanced medial axis. To evaluate the performance of the proposed thinning algorithm we compare with and analyze the previous algorithms.

Interpolation based Single-path Sub-pixel Convolution for Super-Resolution Multi-Scale Networks

  • Alao, Honnang;Kim, Jin-Sung;Kim, Tae Sung;Oh, Juhyen;Lee, Kyujoong
    • Journal of Multimedia Information System
    • /
    • v.8 no.4
    • /
    • pp.203-210
    • /
    • 2021
  • Deep leaning convolutional neural networks (CNN) have successfully been applied to image super-resolution (SR). Despite their great performances, SR techniques tend to focus on a certain upscale factor when training a particular model. Algorithms for single model multi-scale networks can easily be constructed if images are upscaled prior to input, but sub-pixel convolution upsampling works differently for each scale factor. Recent SR methods employ multi-scale and multi-path learning as a solution. However, this causes unshared parameters and unbalanced parameter distribution across various scale factors. We present a multi-scale single-path upsample module as a solution by exploiting the advantages of sub-pixel convolution and interpolation algorithms. The proposed model employs sub-pixel convolution for the highest scale factor among the learning upscale factors, and then utilize 1-dimension interpolation, compressing the learned features on the channel axis to match the desired output image size. Experiments are performed for the single-path upsample module, and compared to the multi-path upsample module. Based on the experimental results, the proposed algorithm reduces the upsample module's parameters by 24% and presents slightly to better performance compared to the previous algorithm.

A Study of Sub-Pixel Detection for Hyperspectral Image Using Linear Spectral Unmixing Algorithm (Linear Spectral Unmixing 기법을 이용한 하이퍼스펙트럴 영상의 Sub-Pixel Detection에 관한 연구)

  • 김대성;조영욱;한동엽;김용일
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.161-166
    • /
    • 2003
  • Hyperspectral imagery have high spectral resolution and provide the potential for more accurate and detailed information extraction than any other type of remotely sensed data. In this paper, the "Linear Spectral Unmixing" model which is one solution to overcome the limit of spatial resolution for remote sensing data was introduced and we applied the algorithm to hyperspectral image. The result was not good because of some problems such as image calibration and used endmembers. Therefore, we analyzed the cause and had a search for a solution.

  • PDF

Low-Complexity Sub-Pixel Motion Estimation Utilizing Shifting Matrix in Transform Domain

  • Ryu, Chul;Shin, Jae-Young;Park, Eun-Chan
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.1020-1026
    • /
    • 2016
  • Motion estimation (ME) algorithms supporting quarter-pixel accuracy have been recently introduced to retain detailed motion information for high quality of video in the state-of-the-art video compression standard of H.264/AVC. Conventional sub-pixel ME algorithms in the spatial domain are faced with a common problem of computational complexity because of embedded interpolation schemes. This paper proposes a low-complexity sub-pixel motion estimation algorithm in the transform domain utilizing shifting matrix. Simulations are performed to compare the performances of spatial-domain ME algorithms and transform-domain ME algorithms in terms of peak signal-to-noise ratio (PSNR) and the number of bits per frame. Simulation results confirm that the transform-domain approach not only improves the video quality and the compression efficiency, but also remarkably alleviates the computational complexity, compared to the spatial-domain approach.