Korean Journal of Geomatics
Vol. 4, No. 1 / November 2004

pp. 1~8

Sub-Pixel Analysis of Hyperspectral Image Using Linear Spectral
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Abstract

In the middle-resolution remote sensing, the Ground Sampled Distance (GSD) that the detector senses and samples
is generally larger than the actual size of the objects (or materials) of interest, and so several objects are embedded
in a single pixel. In this case, as it is impossible to detect these objects by the conventional spatial-based image
processing techniques, it has to be carried out at sub-pixel level through spectral properties. In this paper, we
explain the sub-pixel analysis algorithm, also known as the Linear Spectral Mixing (LSM) model, which has been
experimented using the Hyperion data. To find Endmembers used as the prior knowledge for LSM model, we
applied the concept of the convex geometry on the two-dimensional scatter plot. The Atmospheric Correction and
Minimum Noise Fraction techniques are presented for the pre-processing of Hyperion data. As LSM model is the
simplest approach in sub-pixel analysis, the results of our experiment is not good. But we intend to say that the
sub-pixel analysis shows much more information in comparison with the image classification.

Keywords : Hyperspectral Image, Minimum Noise Fraction(MNF), Convex Geometry, Linear Spectral Mixing
(LSM) Model, Sub-Pixel Analysis, Endmember

1. Introduction

If Remote Sensing images have high spatial resolu-
tion, objects can be detected with the spatial and
spectral information. But if not, it is impossible to
detect the object embedded in a pixel. Therefore one
of the greatest challenges in hyperspectral imaging is
performing the sub-pixel analysis, which is typically
not treated in standard spatial-based image processing.

The Linear Spectral Mixing (LSM) model (Settle,
1996) is one of the most important approaches in
sub-pixel analysis performed on hyperspectral datasets.
This approach comprise of two processes; finding
spectrally unique signatures of pure ground compo-
nents (usually referred to as endmembers) and ex-
pressing individual pixels as linear combination of
endmembers (Antonio, 2002). Here, we adopted the
concept of the convex geometry involving the
representation of the set of all scene pixels as a
two-dimensional scatter plot in spectral space. We also

introduce the general techniques for LSM model.
Before discussing the details of this research, we
would like to make two statements: 1) the analysis
of hyperspectral data, as well as multispectral data,
is an important process for Remote Sensing; and 2)
the sub-pixel analysis with high-dimensional data
provides more effective information in comparison
with the image classification.

This paper is organized as follows. Section II
provides an overview of Hyperspectral Remote
Sensing. Section I describes the fundamental prin-
ciple of the proposed approach. Section IV illustrates
our method based on the experimental result. Finally,
Section V provides some conclusions and comments
on future research.

2. Hyperspectral Remote Sensing

Hyperspectral Remote Sensing (also known as
Imaging Spectrometry, Imaging Spectroscopy or
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Hyperspectral Imaging) is defined as “the acquisition
of imagers in hundreds of registered, contiguous
spectral bands such that for each pixel of an image it
is possible to derive a complete reflectance spectrum
(Goetz, 1992; Freek, 2001)”. Hyperspectral images take
advantage of the hundreds of contiguous spectral
channels to uncover materials that usually cannot be
resolved by multispectral sensors. Fig. 1 explains the
concept of hyperspectral Remote Sensing that acquires
the information on the interested area and provides a
reflectance spectrum for every pixel in the hyper-
spectral data.

Hyperspectral imaging is a fast growing area in
Remote Sensing (Chang, 2003). During the last several
years, a great number of new airborne and spaceborne
hyperspectral sensors have been improved for hyper-
spectral remote sensing applications. At the present
time, acquisition of airborne hyperspectral image is
limited by instrument availability and cost. Probe 1 (128
channels, 0.44 ~2.50um), Hymap (Hyperspectral Mapping
System, 126 channels, 0.45~2.50ym) and HYDICE
(Hyperspectral Digital Imagery Collection Experiment,
210 channels, 0.40~2.504m) are commercially available,
while other instruments such as AVIRIS (Airborne and
Infra-Red Imaging Spectrometer, 224 channels, 0.40~
2.50¢m) are available to only NASA-supported resear-
chers (Antonio, 2002). The Hyperion on EO-1 satellite
is known to be the first commercial spaceborne
hyperspectral sensor and the data can be available at
low cost services from USGS or TRW.

There are numerous specialized methods for analy-
zing high-dimensional data. For example, Binary En-
coding is a classification method that encodes the image
data and reference spectra into Os and 1s based on

Each pixel has an
associated, continuous
spectrum that can be
used to identify the
surface materials
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Fig. 1. Concept of Hyperspectral Remote Sensing (Freek,
2001).

whether a band falls below or above the spectrum mean
(Mazer, 1988). The Spectral Angle Mapper matches
pixel spectra to reference spectra using a measure of
spectral similarity based on the angle between the
spectra treated as vectors in an N-dimensional space
(Kruse, 1993). Spectral Feature Fitting uses least
squares methods to compare the fit of image spectra
to selected reference spectra (Clark, 1990). Matched
Filtering method performs a partial unmixing of spectra
to estimate the abundance of user-defined endmembers
from a set of reference spectra (Harsanyi and Chang,
1994). In addition to the above analysis techniques that
are applied on hyperspectral data, there are many other
researches, including ourselves, who are developing
new techniques.

3. Sub-Pixel Analysis

The main objective of sub-pixel analysis methods is
to identify the relative contribution of different ma-
terials to the spectral composition of a given pixel. This
means that the high-dimensionality of the hyperspectral
data takes advantage of sub-pixel analysis to identify
sub-components of the spectrum for each pixel
(Richard, 2002). The main algorithms for sub-pixel
analysis are Matched Filtering, Mixture Tuned Matched
Filtering and LSM model. Among these, the LSM
model is described below and has been applied to
Hyperion data in practice.

3.1 Linear Spectral Mixing Model

A pixel observed by the remote sensing instrument
consists of mixed materials. Therefore, the LSM model,
intended for determining the relative abundances of
materials that are depicted in multispectral or hyper-
spectral image depending on the materials’ spectral
characteristics, is used to resolve this spectral mixing
problem.

In the LSM model, the spectrum of a mixed pixel
is represented as a linear combination of component
spectra. The weight of each endmember spectrum is
proportional to the fraction of the pixel area (abun-
dance) covered by the endmember (Dimitris, 2000).
Therefore, the general equation for mixing by area is
given by

M
X=) sa+w
k=1

M

Where,

x : spectrum of the mixed pixel
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st © spectra of the endmembers

ax : abundances

M : the number of endmembers

w : N - dimensional error vector for lack-of-fit

Physical considerations dictate the following con-
strains which can be enforced to guarantee meaningful
parameter values.

a, =1
12a, 20 ;k [¥)

If Eq. (1) is expanded, the pixel value matrix of N-
dimension is as follows.

v XK1= S AW 3)
Where, M < N

Using the Least Square method, we can get the value
of abundance from Eq. (4).

A=(S"S)'S"X (4)

3.2 Endmember Extraction

Given the endmember spectra, the LSM model finds
out the abundance values of each endmember for every
pixel. Since the results of LSM model are highly
dependent on the input endmembers and the change of
endmembers, the determination of the endmember is
an important step.

A number of algorithms based on the notion of
spectral mixture modeling have been proposed over the
past decade to perform the complex task of finding
appropriate endmembers for LSM model in hyper-
spectral data. One of the most successful approaches
is the Pixel Purity Index (PPI), which is based on the
geometry of convex sets. There are other attempts that
have been made recently processed to extract end-
members such as N-FINDR, ORASIS (Optical Real-time
Adaptive spectral identification System), [EA (Iterative
Error Analysis), and MESMA (Multiple Endmember
Spectral Mixture Analysis).

The convex geometry was applied to the endmember
extraction technique in this study. Convex geometry
deals with the geometry of convex sets, where a convex
set in N-dimensions is defined as a set of points that
are linear combinations of some set of points of which
the weights are all positive and sum to unity. This is
also the same definition used for the LSM model. A
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Fig. 2. Concept of the Convex Geometry for Linear
Mixture (above) and Extracted Endmembers
from 2D scatter plot (case 2, beiow).

body made up of N+1 points is the simplest possible,
that has some interior, and is called a simplex
(Boardman, 1993).

We selected the 3 endmember classes manually on
the two-dimensional space. The band combination for
this two-dimensional scatter plot was determined by
values of correlation coefficient between bands. Fig. 2
illustrates the concepts of Convex Geometry for linear
mixture and the endmembers extracted by this method
correspond to some pixels (2 ~ 4 pixels per endmember)
in the subset image.

4. Experiments

4.1 Data

The simple processing in sub-pixel analysis with
LSM model is shown in Fig. 3.

To demonstrate LSM model, the Hyperion data which
are sensed by EO-1 satellite was used. The Earth
Observing (EO-1) Satellite was launched on November
21, 2000 as the first Earth observing platform of NASA’ s

‘New Millennium Program (NMP). The EO-1 satellite

contains three observing instruments, Advanced Land
Imager (ALI), LEISA Atmospheric Corrector (LAC), and
Hyperion Imaging Spectrometer, supported by a variety
of newly developed space technologies. The basic
specification of the EO-1 sensors is given in Table 1.
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Fig. 3. Flow Chart of Sub-Pixel Analysis.

Table 1. Specification of EO-1 Sensors.

Parameters Hyperion ALI LAC
Swath Width 7.6km 37km 185km
Spatial Resolution 30m 30m 250m
Channels 220 10 256
Spectral Range | 0.4~2.5/m | 0.4~2.5/m | 0.9~1.6/m

As the number of endmembers that can be extracted
in a two-dimensional space is 3, the subset images of
4 cases that are composed of about 3 objects were used
in applying the LSM model to the hyperspectral data.
The image size was 30 X 30 pixels and study area was
situated in An-Yang, Korea (Fig. 4).

4.2 Pre-processing

To pre-process for Hyperion data, Atmospheric
Correction and Minimum Noise Fraction (MNF) tech-
niques were applied. The MNF transformation is used
to determine the inherent dimensionality of image data,
to segregate noise in the data, and to reduce the
computational requirements for subsequent processing
(Boardman, 1994). The MNF transformation is essen-

(Case , |

(Case 4) (Case 3)

Fig. 4. Study Area (R: 30, G: 20, B: 10).

tially two cascaded Principal Components (PC) trans-
formation. Among the images transformed by MNF, 3
bands were extracted by using the eigenvalues and the
existing data were restored to 153 bands through
Inverse MNF transformation.

Atmospheric Correction is an essential step that must
be performed, because the effects of the atmosphere
must be removed in order for image spectra to match
library spectra. But it may not be required with field
mapping to train the image. In this processing, Internal
Average Relative Reflectance (IARR) was applied for
reducing the effects of the atmosphere. IARR nor-
malizes images to a scene’s average spectrum. This
is particularly effective for reducing hyperspectral data
to relative reflectance in an area where no ground
measurements exist and little is known about the scene
(Kruse, 1985).

4.3 Band Combination and Class Index

The values of correlation coefficient between bands
were used to combine the bands for 2-D scatter plot
on the spectral space. All subset images were calculated
statistically and two of them were selected with the
lowest correlation coefficient. Fig. 5 shows the example
image of the correlation coefficient. The bands com-
bined in the subset image and their coefficients are
arranged in Table 2.

3 Endmembers extracted on the 2-D spectral space
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|

Fig. 5. Example of Correlation Coefficient Image (Case
3. 153 153 pixels).

Table 2. Band Combination and the Lowest Correlation
Coefficients between Bands.

Case 1 Case 2 Case 3 Case 4
Band 15 .0d 64|3 and 64|15 and 64|3 and 64
Combination
Correlation | 595 | (635 | 0000 | 0337
coefficient

were simply indexed through a map drawn on a scale
of 1 to 25,000. (Case 1 - water, soil, and manmade;
Case 2 - grass, soil, and manmade; Case 3 - forest,
soil (or bright concrete), and manmade; Case 4 - forest,
grass, and water)

4.4 Results

The results of spectral mixing appear as a series of
gray-scale images, one for each endmember, plus a
RMS error image. Higher abundances (and higher
errors for the RMS error image) are represented by the
brighter pixels (larger floating-point numbers). We can
also find areas with missing or incorrect endmember
in the RMSE image. If the RMS error doesn’ t become
less than before error, the LSM model is completed.

In general, two constraints, sum-to-one and non-
negative, should be imposed on the LSM model to
produce a desired solution. These have already been
described before (see the Eq. (2)). We did not obtain
satisfactory results from the LSM model were not
satisfied in practice because the convex geometry was
not perfect. This means that the outer pixels do
influence the result as the pixels plotted in the
two-dimensional spectral space are not in the convex
hull. To resolve this problem, we adjusted the values
of abundance through a simple calculation in sum-to-one
and non-negative.

Some of the results of the LSM model display are
displayed below. For the visual estimation, the result
images were processed to 2% linear stretch and we
represented each result in a three-dimensional block
diagram. Fig. 6 is the abundance images of endmember
which show the best results for each case. As you can
see, the results show that LSM model is effective in
analyzing soil (case 1, 2, and 3) or water (case 4). But
since these are unique groups of endmembers compared
with the other endmembers, it seems to be much easier
to acquire a good endmember class. Figures 7~ 10
presents the abundance value of 30X 30 pixels in a
three-dimensional block diagram. The x-axis and y-axis
are the image coordinates and whereas the z-axis shows
the calculated abundance value. It should be noted that
if the value is greater (or the length of the block is
longer), there is relatively higher possibilities of
endmember existing while if the value is lower, the
opposite trend would be observed.

For the quantitative approach, the highest and lowest
values of abundance from the LSM, and their image
coordinates are arranged in the Tables 3 and 4. The
values of the RMSE are generally low, but this means
only the difference between the initial values for
calculation and the result values, which depends on the
endmember classes that are selected in the beginning.

(a) Case 1 (Soil)

(b) Case 2 (Soil)

(c) Case 3 (Bright Concrete)

(d) Case 4 (Water)

Fig. 6. Abundance Images of the Best Results for Each Case.
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Fig. 7. Three-Dimensional Block Diagram of Case 1 (left: Water, middle: Soil, right: Manmade).
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Fig. 8. Three-Dimensional Block Diagram of Case 2 (left: Grass, middle: Soil, right: Manmade).
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Fig. 9. Three-Dimensional Block Diagram of Case 3 (left: Forest, middie: Soil (or Bright Concrete), right: Manmade).

Fig. 10. Three-Dimensional Block Diagram of Case 4 (left: Forest, middle: Grass, right: Water).

Table 3. Values of the Abundance and Image Coordinates (left: Case 1, Light: Case 2).
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Table 4. Values of the Abundance and Image Coordinates (left: Case 3, Light: Case 4).

Forest Soil Manmade | RMSE Forest Grass Water RMSE
Abundance (Max.) 0.665 0.677 0.655 0.007 0.604 0.548 0.574 0.004
Image Coordination @& 1 (17, 17y | (13, 30) | (12, 12) 2, 16) as, 27y | (18, 17) 14, 7)
Abundance (Min.) 0.068 0.101 0.034 0 0.156 0.226 0.008 0
Image Coordination | (15, 17) (8, 20) (11, 14) - (12, 8) (15, 14) @3, 15) -

This implies that it is not a piece of information that
needs to be assessed. Lastly, it is our goal to demon-
strate that the results of sub-pixel analysis produce more
effective information compared with the image classi-
fication by focusing on the interest classes.

5. Conclusion

In this paper, we examined one of the sub-pixel
analysis algorithms, LSM model, and also discussed
about the test performed on the Hyperion data. To find
endmembers, we applied the convex geometry on the
two-dimensional scatter plot. Atmospheric Correction
and Minimum Noise Fraction techniques were used in
the pre-processing of the Hyperion Data.

The results of the sub-pixel analysis of some objects
were satisfactory. Although the shape of the object
couldn’ t be extracted, we could still assume that the
possibility of material existence can be identified in one
pixel.

In this study, we detected some limitations of the
LSM model. First, in practice the sum of abundance
is not unit value, and there exists negative value as well.
‘We also found that the best way to resolve this problem
is to run the algorithm iteratively by using the RMS
error image. Second, we found that the endmembers
play an important role in solving the LSM model.
Therefore, the study on the endmember determination
must be further improved in order to obtain better
results of sub-pixel analysis.

Based on the basic understanding of the limitation
of the LSM model, we plan to conduct further studies
on the following topics: the endmember determination,
detailed processing for sub-pixel analysis, and cons-
trained calculation of abundance.
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