• Title/Summary/Keyword: Styrene Oxidation

Search Result 29, Processing Time 0.021 seconds

Polymerization of Vinyl Monomers Initiated by Thianthrene Cation Radical with Potential Biological Activity

  • Lee, Beomgi;Kim, Seongsim;Park, Jaeyoung;Cheong, Hyeonsook;Noh, Ji Eun;Woo, Hee-Gweon
    • Journal of Integrative Natural Science
    • /
    • v.5 no.2
    • /
    • pp.127-130
    • /
    • 2012
  • Polymerization of vinyl monomers is promoted by thianthrene cation radical as a part of our research concerning the reactions of various agents with readily isolable, yet highly reactive species and elucidate the biological activity. Thianthrene cation radical initiated the homopolymerization and copolymerization of styrene and ethyl vinyl ether. The polymerization yields decreased as the concentration of phenylacetylene or diphenylethylene increased. Such polymereization by cationic thianthrene radical could provide some clues for the reaction in living animals. Comments on possible polymerization mechanisms were suggested.

The Effects of Cr-Substitution in Ferrite Catalysts and the Catalytic Dehydrogenation of Ethylbenzene (페라이트 촉매의 Cr 치환효과와 에틸벤젠의 탈수소반응)

  • Lim, Ki-Chul;Kim, Eul-San;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.2 no.3
    • /
    • pp.279-288
    • /
    • 1991
  • Mg- and Zn-ferrites having spinel structure, a kind of complex oxides showing the advantageous properties of constituent single metal oxides, were selected to find a relationship between their catalytic activities in the dehydrogenation of ethylbenzene to styrene and the catalytic properties. For the structural and physical analyses of ferrites, XRD, BET, TG/DTA, ESCA, TEM, and TPD methods were employed. The effects of Cr-substitution were intensively studied by the experimental methods mentioned above. Chromium which showed a preferential tendency to diffuse to the surface acted as a structural promoter by increasing surface area and stability of catalyst structure. In the dehydrogenation of ethylbenzene, catalytic activity, and the effects of Cr-substitution were investigated. Oxygen mobility was decreased with the amount of Cr-substitution in $MgCr_xFe_{2-x}O_4$, which resulted in the increase of selectivity to styrene and the suppression of total oxidation.

  • PDF

Catalytic Activity of Ga(Ⅲ)-, In(Ⅲ)- and Tl(Ⅲ)-porphyrin Complexes (Ga(Ⅲ), In(Ⅲ) 및 Tl(Ⅲ) 금속이온을 포함한 Metalloporphyrin 착물의 촉매적 특성)

  • Park, Yu Chul;Na, Hun Gil;Kim, Seong Su
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.5
    • /
    • pp.364-370
    • /
    • 1995
  • The catalytic oxidations of several olefins in $CH_2Cl_2$ have been investigated using non-redox metalloporphyrin (M=Ga(III), In(III), Tl(III)) complexes as catalyst and sodium hypochlorite as terminal oxidant. Porphyrins were $(p-CH_3O)TPP,\;(p-CH_3)TPP,\;TPP,\;(p-F)TPP,\;(p-Cl)TPP\;and\;(F_20)TPP$ (TPP=tetraphenylporphyrin), and olefins were $(p-CH_3O)-,\;(p-CH_3)-,\;(p-H)-,\;(p-F)-,\;(p-Cl)-\;and\;(p-Br)styrene$styrene and cyclopentene and cyclohexene. The substrate conversion yield was discussed according to the substituent effects of metalloporphyrin and substrate, and the radius effect of non-redox metal ion. The conversion yield of substrate by changing the substituent of TPP increased in the order of $p-CH_3O$ < $p-CH_3$ < H < p-F < p-Cl, which was consistent with the sequence of $4{\sigma}$ values of TPP. But the substituent effect of substrate on the conversion yield decreased with increasing the ${\sigma}^+$ values on substrates in the order of p-CH3O > p-CH3 > H > p-Cl > p-Br. For the oxidation of several olefins, the complexes of In(III)- and Tl(III)-porphyrins turned out to be more active catalysts than Ga(III)-porphyrin.

  • PDF

Synthetic, Characterization, Biological, Electrical and Catalytic Studies of Some Transition Metal Complexes of Unsymmetrical Quadridentate Schiff Base Ligand

  • Maldhure, A. K.;Pethe, G. B.;Yaul, A. R.;Aswar, A. S.
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.3
    • /
    • pp.215-224
    • /
    • 2015
  • Unsymmetrical tetradentate Schiff base N-(2-hydroxy-5-methylacetophenone)-N'-(2-hydroxy acetophenone) ethylene diamine (H2L) and its complexes with Cr(III), Mn(II), Fe(III), Co(II), Ni(II) and Cu(II) have been synthesized and characterized by elemental analyses, magnetic susceptibility measurements, IR, electronic spectra and thermogravimetric analyses. 1H, 13C-NMR and FAB Mass spectra of ligand clearly indicate the presence of OH and azomethine groups. Elemental analyses of the complexes indicate that the metal to ligand ratio is 1:1 in all complexes. Infrared spectra of complexes indicate a dibasic quadridentate nature of the ligand and its coordination to metal ions through phenolic oxygen and azomethine nitrogen atoms. The thermal behavior of these complexes showed the loss of lattice water in the first step followed by decomposition of the ligand in subsequent steps. The thermal data have also been analyzed for the kinetic parameters by using Horowitz-Metzger method. The dependence of the electrical conductivity on the temperature has been studied over the temperature range 313-403 K and the complexes are found to show semiconducting behavior. XRD and SEM images of some representative complexes have been recorded. The antimicrobial activity of the ligand and its complexes has been screened against various microorganisms and all of them were found to be active against the test organisms. The Fe(III) and Ni(II) complex have been tested for the catalytic oxidation of styrene.

Effect of Storage Conditions on Graft of Polypropylene Non-woven Fabric Induced by Electron Beam (전자선 조사된 폴리프로필렌 부직포의 그라프트에 있어 보관조건이 미치는 영향)

  • Lee, Jin Young;Jeun, Joon-Pyo;Kang, Phil-Hyun
    • Journal of Radiation Industry
    • /
    • v.9 no.2
    • /
    • pp.57-62
    • /
    • 2015
  • In this study, we fabricated effect of storage conditions on graft of polypropylene (PP) non-woven fabric induced by electron beam. The electron beam irradiations on PP non-woven fabric were carried out over a range of irradiation doses from 25 to 100 kGy to make free radicals on fabric surface. The radical measurement was established by electron spin resonance (ESR) for confirming the changes of the alkyl radical and peroxy radical according to effect of storage time, storage temperature and atmosphere. It was observed that the free radicals were increased with irradiation dose and decreased with storage time due to the continuous oxidation. However, the radical extinction was significantly delayed due to reduced mobility of radicals at extremely low temperature. The degree of graft based on the analysis of ESR was investigated. The conditions of graft reaction were set at a temperature: $60^{\circ}C$, reaction time: 6 hours and styrene monomer concentration: 20 wt%.

Characteristics of odorous VOCs removal by using electrolytic oxidant (전해 산화제에 의한 악취 원인 VOCs 제거 특성)

  • Lee, Tae Ho;Ryu, Hee Wook
    • Journal of odor and indoor environment
    • /
    • v.17 no.4
    • /
    • pp.381-388
    • /
    • 2018
  • In this study, various conditions and phenomena that occur in the process of removing odorous VOCs by using electrolyzed oxidant were examined. The formation of hypochlorous acid, which is an oxidant produced by electrolysis, was investigated and the properties of the oxidizing agent used to decompose toluene, xylene, and cyclohexane were investigated. As a result, it was found that the production rate and the final concentration of the oxidizing agent increased with the current density. It was found that the degree of removal varies depending on the property of each pollutant. Interestingly, in the batch experiments in which the pH of the produced oxidant was controlled, it was found that the degree of elimination varied depending on the pH of the substance. These results suggest that the difference in the concentration and distribution of hypochlorous acid (HOCl) and hypochlorite ($OCl^-$) due to the pH change leads to the difference in oxidizing power on the oxidation characteristics of each substance. Styrene and terpineol showed better degradation characteristics than toluene and xylene in odorous VOC removal experiments by spraying electrolytic oxidant using a lab-scale continuous reactor. In conclusion, the removal of odorous VOCs by the electrolytic oxidant can have various applications in that it can oxidize pollutants of various spectra.

Preparation of Conductive PEDOT-PSMA Hybrid Thin Films Using Simultaneous Co-vaporized Vapor Phase Polymerization (동시-공증발 기상 중합을 이용한 전도성 PEDOT-PSMA 박막 제조)

  • Nodora, Kerguelen Mae;Yim, Jin-Heong
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.330-335
    • /
    • 2018
  • A new approach for the fabrication of organic-organic conducting composite thin films using simultaneous co-vaporization vapor phase polymerization (SC-VPP) of two or more monomers that have different polymerization mechanisms (i.e., oxidation-coupling polymerization and radical polymerization) was reported for the first time. In this study, a PEDOT-PSMA composite thin film consisting of poly(3,4-ethylenedioxythiophene)(PEDOT) and poly(styrene-co-maleic anhydride)(PSMA) was prepared by SC-VPP process. The preparation of organic-organic conductive composite thin films was confirmed through FT-IR and $^1H-NMR$ analyses. The surface morphology analysis showed that the surface of PEDOT-PSMA thin film was rougher than that of PEDOT thin film. Therefore, PEDOT-PSMA exhibited lower electrical conductivity than that of PEDOT. But the conductivity can be improved by adding 2-ethyl-4-methyl imidazole as a weak base. The contact angle of PEDOT-PSMA was about $50^{\circ}$, as compared to $62^{\circ}$ for PEDOT. The demonstrated methodology for preparing an organic-organic conductive hybrid thin film is expected to be useful for adjusting intrinsic conductive polymer (ICP)'s surface properties such as mechanical, optical, and roughness properties.

Incorporation of Titanium into H-ZSM-5 Zeolite via Chemical Vapor Deposition: Effect of Steam Treatment

  • Xu, Cheng-Hua;Jin, Tai-Huan;Jhung, Sung-Hwa;Hwang, Jin-Soo;Chang, Jong-San;Qiu, Fa-Li;Park, Sang-Eon
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.681-686
    • /
    • 2004
  • Ti-ZSM-5 prepared by secondary synthesis, from the reaction of H-ZSM-5 with vapor phase $TiCl_4$, was characterized with several physicochemical techniques including FT-IR and UV/VIS-DRS. It was found that zeolite structure, surface area and pore volume did not change, and the framework aluminum could not be replaced by titanium atom during the secondary synthesis of Ti-ZSM-5. The incorporation of titanium into the framework might be due to reaction of $TiCl_4$with the silanol groups associated with defects or surface sites. The formation of extra-framework titanium could not be avoided, unless the samples were further treated by water vapor at 550 $^{\circ}C$ or higher temperature. High temperature steam treatment of Ti-ZSM-5 prepared by chemical vapor deposition with $TiCl_4$was efficient to prevent the formation of non-framework titanium species. Ti-ZSM-5 zeolites prepared in this work contained only framework titanium species and exhibited improved catalytic property close to TS-1 prepared by hydrothermal synthesis.

A study on the recovery of chromium from metal-plating wastewater with spent catalyst (폐산화철촉매에 의한 도금폐수중 크롬이온 회수에 관한 기초연구)

  • Lee Hyo Sook;Oh Yeung Soon;Lee Woo Chul
    • Resources Recycling
    • /
    • v.13 no.2
    • /
    • pp.9-15
    • /
    • 2004
  • A large tons of spent iron oxide catalyst come from the Styrene Monomer(SM) production company. It is caused to pollute the land and underground water due to the high alkali contents in the catalyst by burying them in the landfill. In order to recycle the spent catalyst, a basic study on the recovery of chromium ion from metal plating wastewater with the spent catalyst was carried out. The iron oxide catalyst adsorbed physically $Cr^{+6}$ in the lower pH 3.0, that is the isoelectric point of the spent catalyst. It was found that the iron oxide catalyst reduced the $Cr^{+6}$ into Cr+3 by the oxidation of ferrous ion into ferric ion on the surface of catalyst, and precipitated as $Cr(OH)_3$ in the higher than pH 3.0. The $Cr^{+6}$ was recovered 2.0∼2.3g/L catalyst in the range of pH 0.5∼2.0, but it was recovered 1.5 g/L catalyst at pH 3.0 of wastewater. The recovery of Cr was increased as the higher concentration in the continuous process, but the flowrates were nearly affected on the Cr recovery.