KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.4
/
pp.1464-1485
/
2021
Emotional style of multimedia art works are abstract content information. This study aims to explore emotional style transfer method and find the possible way of matching music with appropriate images in respect to emotional style. DCNNs (Deep Convolutional Neural Networks) can capture style and provide emotional style transfer iterative solution for affective image generation. Here, we learn the image emotion features via DCNNs and map the affective style on the other images. We set image emotion feature as the style target in this style transfer problem, and held experiments to handle affective image generation of eight emotion categories, including dignified, dreaming, sad, vigorous, soothing, exciting, joyous, and graceful. A user study was conducted to test the synesthesia emotional image style transfer result with ground truth user perception triggered by the music-image pairs' stimuli. The transferred affective image result for music-image emotional synesthesia perception was proved effective according to user study result.
Deep-learning based style transfer has recently attracted great attention, because it provides high quality transfer results by appropriately reflecting the high level structural characteristics of images. This paper deals with the problem of providing more stable and more diverse style transfer results of such deep-learning based style transfer method. Based on the investigation of the experimental results from the wide range of hyper-parameter settings, this paper defines the problem of the stability and the diversity of the style transfer, and proposes a partial loss normalization method to solve the problem. The style transfer using the proposed normalization method not only gives the stability on the control of the degree of style reflection, regardless of the input image characteristics, but also presents the diversity of style transfer results, unlike the existing method, at controlling the weight of the partial style loss, and provides the stability on the difference in resolution of the input image.
Journal of the Korea Society of Computer and Information
/
v.28
no.8
/
pp.31-38
/
2023
Style transfer is one of deep learning-based image processing techniques that has been actively researched recently. These research efforts have led to significant improvements in the quality of result images. Style transfer is a technology that takes a content image and a style image as inputs and generates a transformed result image by applying the characteristics of the style image to the content image. It is becoming increasingly important in exploiting the diversity of digital content. To improve the usability of style transfer technology, ensuring stable performance is crucial. Recently, in the field of natural language processing, the concept of Transformers has been actively utilized. Attention maps, which forms the basis of Transformers, is also being actively applied and researched in the development of style transfer techniques. In this paper, we analyze the representative techniques SANet and AdaAttN and propose a novel attention map-based structure which can generate improved style transfer results. The results demonstrate that the proposed technique effectively preserves the structure of the content image while applying the characteristics of the style image.
Proceedings of the Korea Information Processing Society Conference
/
2019.05a
/
pp.475-478
/
2019
Although the work of neural style transfer has shown successful applications in transferring the style of a certain type of artistic painting, it is less effective in transferring Oriental paintings. In this paper, we explore three methods which are effective in transferring Oriental paintings. Then, we take a typical network from each method to carry on the experiment, in view of three different methods to Oriental paintings style transfer effect has carried on the discussion.
Style transfer based on neural network provides very high quality results by reflecting the high level structural characteristics of images, and thereby has recently attracted great attention. This paper deals with the problem of resolution limitation due to GPU memory in performing such neural style transfer. We can expect that the gradient operation for style transfer based on partial image, with the aid of the fixed size of receptive field, can produce the same result as the gradient operation using the entire image. Based on this idea, each component of the style transfer loss function is analyzed in this paper to obtain the necessary conditions for partitioning and padding, and to identify, among the information required for gradient calculation, the one that depends on the entire input. By structuring such information for using it as auxiliary constant input for partition-based gradient calculation, this paper develops a recursive algorithm for super high-resolution image style transfer. Since the proposed method performs style transfer by partitioning input image into the size that a GPU can handle, it can perform style transfer without the limit of the input image resolution accompanied by the GPU memory size. With the aid of such super high-resolution support, the proposed method can provide a unique style characteristics of detailed area which can only be appreciated in super high-resolution style transfer.
Journal of the Korea Society of Computer and Information
/
v.27
no.7
/
pp.27-33
/
2022
In this paper, we propose a novel generator architecture for multi-domain style transfer method not an image to image translation, as a method of generating a styled image by transfering a style to the content image. A latent vector and Gaussian noises are added to the generator of GAN so that a high quality image is generated while considering the characteristics of various data distributions for each domain and preserving the features of the content data. With the generator architecture of the proposed GAN, networks are configured and presented so that the content image can learn the styles for each domain well, and it is applied to the domain composed of images of the four seasons to show the high resolution style transfer results.
Most vehicle detection methods have poor vehicle feature extraction performance at night, and their robustness is reduced; hence, this study proposes a night vehicle detection method based on style transfer image enhancement. First, a style transfer model is constructed using cycle generative adversarial networks (cycleGANs). The daytime data in the BDD100K dataset were converted into nighttime data to form a style dataset. The dataset was then divided using its labels. Finally, based on a YOLOv5s network, a nighttime vehicle image is detected for the reliable recognition of vehicle information in a complex environment. The experimental results of the proposed method based on the BDD100K dataset show that the transferred night vehicle images are clear and meet the requirements. The precision, recall, mAP@.5, and mAP@.5:.95 reached 0.696, 0.292, 0.761, and 0.454, respectively.
Texture transfer is a method to transfer the texture of an input image into a target image, and is also used for transferring artistic style of the input image. This study presents a real-time texture transfer for generating artistic style video. In order to enhance performance, this paper proposes a parallel framework using T-shape kernel used in general texture transfer on GPU. To accelerate motion computation time which is necessarily required for maintaining temporal coherence, a multi-scaled motion field is proposed in parallel concept. Through these approach, an artistic texture transfer for video with a real-time performance is archived.
In this paper, we propose a framework that transfers the information of style motions to content motions based on a variational autoencoder network combined with a style encoding in the latent space. Because we transfer a style to a content motion that is sampled from a variational autoencoder, we can increase the diversity of existing motion data. In addition, we can improve the unnatural motions caused by decoding a new latent variable from style transfer. That improvement was achieved by additionally using the velocity information of motions when generating next frames.
Timing plays a key role in expressing the qualitative aspects of a character's motion; that is, conveying emotional state, personality, and character role, all potentially without changing spatial positions. Temporal editing of locomotion style is particularly difficult for a novice animator since observers are not well attuned to the sense of weight and energy displayed through motion timing; and the interface for adjusting timing is far less intuitive to use than that for adjusting pose. In this paper, we propose an editing system that effectively captures the timing variations in an example locomotion set and utilizes them for style transfer from one motion to another via both global and upper-body timing transfers. The global timing transfer focuses on matching the input motion to the body speed of the selected example motion, while the upper-body timing transfer propagates the sense of movement flow - succession - through the torso and arms. Our transfer process is based on key times detected from the example set and transferring the relative changes of angle rotation in the upper body joints from a timing source to an input target motion. We demonstrate that our approach is practical in an interactive application such that a set of short locomotion cycles can be applied to generate a longer sequence with continuously varied timings.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.