• Title/Summary/Keyword: Student Management System

Search Result 353, Processing Time 0.021 seconds

School Experiences and the Next Gate Path : An analysis of Univ. Student activity log (대학생의 학창경험이 사회 진출에 미치는 영향: 대학생활 활동 로그분석을 중심으로)

  • YI, EUNJU;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.149-171
    • /
    • 2020
  • The period at university is to make decision about getting an actual job. As our society develops rapidly and highly, jobs are diversified, subdivided, and specialized, and students' job preparation period is also getting longer and longer. This study analyzed the log data of college students to see how the various activities that college students experience inside and outside of school might have influences on employment. For this experiment, students' various activities were systematically classified, recorded as an activity data and were divided into six core competencies (Job reinforcement competency, Leadership & teamwork competency, Globalization competency, Organizational commitment competency, Job exploration competency, and Autonomous implementation competency). The effect of the six competency levels on the employment status (employed group, unemployed group) was analyzed. As a result of the analysis, it was confirmed that the difference in level between the employed group and the unemployed group was significant for all of the six competencies, so it was possible to infer that the activities at the school are significant for employment. Next, in order to analyze the impact of the six competencies on the qualitative performance of employment, we had ANOVA analysis after dividing the each competency level into 2 groups (low and high group), and creating 6 groups by the range of first annual salary. Students with high levels of globalization capability, job search capability, and autonomous implementation capability were also found to belong to a higher annual salary group. The theoretical contributions of this study are as follows. First, it connects the competencies that can be extracted from the school experience with the competencies in the Human Resource Management field and adds job search competencies and autonomous implementation competencies which are required for university students to have their own successful career & life. Second, we have conducted this analysis with the competency data measured form actual activity and result data collected from the interview and research. Third, it analyzed not only quantitative performance (employment rate) but also qualitative performance (annual salary level). The practical use of this study is as follows. First, it can be a guide when establishing career development plans for college students. It is necessary to prepare for a job that can express one's strengths based on an analysis of the world of work and job, rather than having a no-strategy, unbalanced, or accumulating excessive specifications competition. Second, the person in charge of experience design for college students, at an organizations such as schools, businesses, local governments, and governments, can refer to the six competencies suggested in this study to for the user-useful experiences design that may motivate more participation. By doing so, one event may bring mutual benefits for both event designers and students. Third, in the era of digital transformation, the government's policy manager who envisions the balanced development of the country can make a policy in the direction of achieving the curiosity and energy of college students together with the balanced development of the country. A lot of manpower is required to start up novel platform services that have not existed before or to digitize existing analog products, services and corporate culture. The activities of current digital-generation-college-students are not only catalysts in all industries, but also for very benefit and necessary for college students by themselves for their own successful career development.

Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression (Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석)

  • Kim, Sun Woong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.107-122
    • /
    • 2017
  • Volatility in the stock market returns is a measure of investment risk. It plays a central role in portfolio optimization, asset pricing and risk management as well as most theoretical financial models. Engle(1982) presented a pioneering paper on the stock market volatility that explains the time-variant characteristics embedded in the stock market return volatility. His model, Autoregressive Conditional Heteroscedasticity (ARCH), was generalized by Bollerslev(1986) as GARCH models. Empirical studies have shown that GARCH models describes well the fat-tailed return distributions and volatility clustering phenomenon appearing in stock prices. The parameters of the GARCH models are generally estimated by the maximum likelihood estimation (MLE) based on the standard normal density. But, since 1987 Black Monday, the stock market prices have become very complex and shown a lot of noisy terms. Recent studies start to apply artificial intelligent approach in estimating the GARCH parameters as a substitute for the MLE. The paper presents SVR-based GARCH process and compares with MLE-based GARCH process to estimate the parameters of GARCH models which are known to well forecast stock market volatility. Kernel functions used in SVR estimation process are linear, polynomial and radial. We analyzed the suggested models with KOSPI 200 Index. This index is constituted by 200 blue chip stocks listed in the Korea Exchange. We sampled KOSPI 200 daily closing values from 2010 to 2015. Sample observations are 1487 days. We used 1187 days to train the suggested GARCH models and the remaining 300 days were used as testing data. First, symmetric and asymmetric GARCH models are estimated by MLE. We forecasted KOSPI 200 Index return volatility and the statistical metric MSE shows better results for the asymmetric GARCH models such as E-GARCH or GJR-GARCH. This is consistent with the documented non-normal return distribution characteristics with fat-tail and leptokurtosis. Compared with MLE estimation process, SVR-based GARCH models outperform the MLE methodology in KOSPI 200 Index return volatility forecasting. Polynomial kernel function shows exceptionally lower forecasting accuracy. We suggested Intelligent Volatility Trading System (IVTS) that utilizes the forecasted volatility results. IVTS entry rules are as follows. If forecasted tomorrow volatility will increase then buy volatility today. If forecasted tomorrow volatility will decrease then sell volatility today. If forecasted volatility direction does not change we hold the existing buy or sell positions. IVTS is assumed to buy and sell historical volatility values. This is somewhat unreal because we cannot trade historical volatility values themselves. But our simulation results are meaningful since the Korea Exchange introduced volatility futures contract that traders can trade since November 2014. The trading systems with SVR-based GARCH models show higher returns than MLE-based GARCH in the testing period. And trading profitable percentages of MLE-based GARCH IVTS models range from 47.5% to 50.0%, trading profitable percentages of SVR-based GARCH IVTS models range from 51.8% to 59.7%. MLE-based symmetric S-GARCH shows +150.2% return and SVR-based symmetric S-GARCH shows +526.4% return. MLE-based asymmetric E-GARCH shows -72% return and SVR-based asymmetric E-GARCH shows +245.6% return. MLE-based asymmetric GJR-GARCH shows -98.7% return and SVR-based asymmetric GJR-GARCH shows +126.3% return. Linear kernel function shows higher trading returns than radial kernel function. Best performance of SVR-based IVTS is +526.4% and that of MLE-based IVTS is +150.2%. SVR-based GARCH IVTS shows higher trading frequency. This study has some limitations. Our models are solely based on SVR. Other artificial intelligence models are needed to search for better performance. We do not consider costs incurred in the trading process including brokerage commissions and slippage costs. IVTS trading performance is unreal since we use historical volatility values as trading objects. The exact forecasting of stock market volatility is essential in the real trading as well as asset pricing models. Further studies on other machine learning-based GARCH models can give better information for the stock market investors.

The Empirical Exploration of the Conception on Nursing (간호개념에 대한 기초조사)

  • 백혜자
    • Journal of Korean Academy of Nursing
    • /
    • v.11 no.1
    • /
    • pp.65-87
    • /
    • 1981
  • The study is aimed at exploring concept held by clinical nurses of nursing. The data were collected from 225 nurses conviniently selected from the population of nurses working in Kang Won province. Findings include. 1) Nurse's Qualification. The respondents view that specialized knowledge is more important qualification of the nurse. Than warm personality. Specifically, 92.9% of the respondents indicated specialized knowledge as the most important qualification while only 43.1% indicated warm personality. 2) On Nursing Profession. The respondents view that nursing profession as health service oriented rather than independent profession specifically. This suggests that nursing profession is not consistentic present health care delivery system nor support nurses working independently. 3) On Clients of Nursing Care The respondents include patients, family and the community residents in the category of nursing care. Specifically, 92.0% of the respondents view that patient is the client, while only 67.1% of nursing student and 74.7% of herself. This indicates the lack of the nurse's recognition toward their clients. 4) On the Priority of Nursing care. Most of the respondents view the clients physical psychological respects as important component of nursing care but not the spiritual ones. Specially, 96.0% of the respondents indicated the physical respects, 93% psychological ones, while 64.1% indicated the spiritual ones. This means the lack of comprehensive conception on nursing aimension. 5) On Nursing Care. 91.6% of the respondents indicated that nursing care is the activity decreasing pain or helping to recover illness, while only 66.2% indicated earring out the physicians medical orders. 6) On Purpose of Nursing Care. 89.8% of the respondents indicated preventing illness and than 76.6% of them decreasing 1;ai of clients. On the other hand, maintaining health has the lowest selection at the degree of 13.8%. This means the lack of nurses' recognition for maintaining health as the most important point. 7) On Knowledge Needed in Nursing Care. Most of the respondents view that the knowledge faced with the spot of nursing care is needed. Specially, 81.3% of the respondents indicated simple curing method and 75.1%, 73.3%, 71.6% each indicated child nursing, maternal nursing and controlling for the communicable disease. On the other hand, knowledge w hick has been neglected in the specialized courses of nursing education, that is, thinking line among com-w unity members, overcoming style against between stress and personal relation in each home, and administration, management have a low selection at the depree of 48.9%,41.875 and 41.3%. 8) On Nursing Idea. The highest degree of selection is that they know themselves rightly, (The mean score measuring distribution was 4.205/5) In the lowest degree,3.016/5 is that devotion is the essential element of nursing, 2.860/5 the religious problems that human beings can not settle, such as a fatal ones, 2,810/5 the nursing profession is worth trying in one's life. This means that the peculiarly essential ideas on the professional sense of value. 9) On Nursing Services. The mean score measuring distribution for the nursing services showed that the inserting of machine air way is 2.132/5, the technique and knowledge for surviving heart-lung resuscitating is 2.892/s, and the preventing air pollution 3.021/5. Specially, 41.1% of the respondents indicated the lack of the replied ratio. 10) On Nurses' Qualifications. The respondents were selected five items as the most important qualifications. Specially, 17.4% of the respondents indicated specialized knowledge, 15.3% the nurses' health, 10.6% satisfaction for nursing profession, 9.8% the experience need, 9.2% comprehension and cooperation, while warm personality as nursing qualifications have a tendency of being lighted. 11) On the Priority of Nursing Care The respondents were selected three items as the most important component. Most of the respondents view the client's physical, spiritual: economic points as important components of nursing care. They showed each 36.8%, 27.6%, 13.8% while educational ones showed 1.8%. 12) On Purpose of Nursing Care. The respondents were selected four items as the most important purpose. Specially,29.3% of the respondents indicated curing illness for clients, 21.3% preventing illness for client 17.4% decreasing pain, 15.3% surviving. 13) On the Analysis of Important Nursing Care Ranging from 5 point to 25 point, the nurses' qualification are concentrated at the degree of 95.1%. Ranging from 3 point to 25, the priorities of nursing care are concentrated at the degree of 96.4%. Ranging from 4 point to 16, the purpose of nursing care is concentrated at the degree of 84.0%. 14) The Analysis, of General Characteristics and Facts of Nursing Concept. The correlation between the educational high level and nursing care showed significance. (P < 0.0262). The correction between the educational low level and purpose of nursing care showed significance. (P < 0.002) The correlation between nurses' working yeras and the degree of importance for the purpose of nursing care showed significance (P < 0.0155) Specially, the most affirmative answers were showed from two years to four ones. 15) On Nunes' qualification and its Degree of Importance The correlation between nurses' qualification and its degree of importance showed significance. (r = 0.2172, p< 0.001) 0.005) B. General characteristics of the subjects The mean age of the subject was 39 ; with 38.6% with in the age range of 20-29 ; 52.6% were male; 57.9% were Schizophrenia; 35.1% were graduated from high school or high school dropouts; 56.l% were not have any religion; 52.6% were unmarried; 47.4% were first admission; 91.2% were involuntary admission patients. C. Measurement of anxiety variables. 1. Measurement tools of affective anxiety in this study demonstrated high reliability (.854). 2. Measurement tools of somatic anxiety in this study demonstrated high reliability (.920). D. Relationship between the anxiety variables and the general characteristics. 1. Relationship between affective anxiety and general characteristics. 1) The level of female patients were higher than that of the male patient (t = 5.41, p < 0.05). 2) Frequencies of admission were related to affective anxiety, so in the first admission the anxiety level was the highest. (F = 5.50, p < 0.005). 2, Relationship between somatic anxiety and general characteristics. 1) The age range of 30-39 was found to have the highest level of the somatic anxiety. (F = 3.95, p < 0.005). 2) Frequencies of admission were related to the somatic anxiety, so .in first admission the anxiety level was the highest. (F = 9.12, p < 0.005) 0. Analysis of significant anxiety symptoms for nursing intervention. 1. Seven items such as dizziness, mental integration, sweating, restlessness, anxiousness, urinary frequency and insomnia, init. accounted for 96% of the variation within the first 24 hours after admission. 2. Seven items such as fear, paresthesias, restlessness, sweating insomnia, init., tremors and body aches and pains accounted for 84% of the variation on the 10th day after admission.

  • PDF