• 제목/요약/키워드: Stud connectors

검색결과 108건 처리시간 0.024초

대직경 스터드 전단연결재의 정적거동 (Static Behavior of Large Stud Shear Connectors)

  • 이필구;심창수;윤태양
    • 한국강구조학회 논문집
    • /
    • 제15권6호통권67호
    • /
    • pp.611-620
    • /
    • 2003
  • 강합성교량에서 19mm 또는 22mm 직경을 갖는 전단연결재가 일반적으로 사용되고 있다. 강교 상세의 단순화와 향후 바닥판 제거의 용이성 및 프리캐스트 바닥판 전단포켓의 효율적인 배치를 위해서는 대직경 스터드 전단연결재가 필요하다. 현재의 전단연결재 설계범위를 넘어서는 대직경 스터드 전단연결재에 대한 push-out 실험을 통해서 정적거동에 관한 항목들을 검토하고 기존 설계식과의 비교를 수행하였다. 25, 27, 30mm 직경의 스터드에 대한 전단실험을 통해서 탄성영역에서의 전단강성을 평가하고 세 개의 직선으로 구성된 하중-상대변위 곡선을 제안하였다. 파괴시의 극한상대변위를 평가하고 극한강도를 유로코드-4의 설계식과 비교하여 설계의 안전율을 평가하였다. 또한 30mm 스터드의 경우는 용접과 콘크리트 지압능력의 개선이 필요한 것으로 나타났다.

Static behavior of stud shear connectors with initial damage in steel-UHPC composite bridges

  • Qi, Jianan;Tang, Yiqun;Cheng, Zhao;Xu, Rui;Wang, Jingquan
    • Advances in concrete construction
    • /
    • 제9권4호
    • /
    • pp.413-421
    • /
    • 2020
  • For steel-concrete girders made composite using shear studs, initial damage on studs induced by weld defect, unexpected overloading, fatigue and others might degrade the service performance and even threaten the structural safety. This paper conducted a numerical study to investigate the static behavior of damaged stud shear connectors that were embedded in ultra high performance concrete (UHPC). Parameters included damage degree and damage location. The material nonlinear behavior was characterized by multi-linear stress-strain relationship and damage plasticity model. The results indicated that the shear strength was not sensitive to the damage degree when the damage occurred at 2/3d (d is the stud diameter) from the stud root. An increased stud area would be engaged in resisting shear force as the distance of damage location from stud root increased and the failure section becomes inclined, resulting in a less reduction in the shear strength and shear stiffness. The reduction factor was proposed to consider the degradation of the shear strength of the damaged stud. The reduction factor can be calculated using two approaches: a linear relationship and a square relationship with the damage degree corresponding to the shear strength dominated by the section area and the nominal diameter of the damaged stud. It was found that the proposed method is preferred to predict the shear strength of a stud with initial damage.

스터드 커넥터로 연결된 H형강보의 인장하중 전달성능 (Tensile Load Transmission Capacity of H-shaped Beam by Stud Connectors)

  • 이명재;최완철;김원기;김재희;이상호
    • 한국강구조학회 논문집
    • /
    • 제16권2호통권69호
    • /
    • pp.267-274
    • /
    • 2004
  • 본 실험의 목적은 H형강보에 작용하는 매달림 하중 중 연직하중인 인장하중을 그 대상으로 구조설계시 적용되는 설계하중에 대하여 인장하중이 스터드 커넥터를 통하여 슬래브에 전달되는 하중전달 경로와 그 성능을 파악하는데 있다. 이를 위하여 스터드 커넥터의 기초실험을 실시하고 2개의 실대형 시험체를 제작하여 인장하중에 대한 전달성능을 파악하였다. 실험의 변수로는 H형강보의 크기가 적용되었다. 인장하중 가력실험결과 현행 강구조계산기준을 따라 설계하면 스터드 커넥터에 의한 H형강보의 인장하중의 전달성능은 설계하중을 만족하고 있음을 확인하였다.

Experimental studies of headed stud shear connectors in UHPC Steel composite slabs

  • Gao, Xiao-Long;Wang, Jun-Yan;Yan, Jia-Bao
    • Structural Engineering and Mechanics
    • /
    • 제74권5호
    • /
    • pp.657-670
    • /
    • 2020
  • Due to the high compressive and tensile strength of ultra-high performance concrete (UHPC), UHPC used in steel concrete composite structures provided thinner concrete layer compared to ordinary concrete. This leaded to the headed stud shear connectors embedded in UHPC had a low aspect ratio. In order to systematic investigate the effect of headed stud with low aspect ratio on the structural behaviors of steel UHPC composite structure s this paper firstly carried out a test program consisted of twelve push out specimens. The effects of stud height, aspect ratio and reinforcement bars in UHPC on the structural behaviors of headed studs were investigated. The push out test results shows that the increasing of stud height did not obviously influence the structural behaviors of headed studs and the aspect ratio of 2.16 was proved enough to take full advantage of the headed stud strength. Based on the test results, the equation considering the contribution of weld collar was modified to predict the shear strength of headed stud embedded in UHPC. The modified equation could accurately predict the shear strength of headed stud by comparing with the experimental results. On the basis of push out test results, bending tests consisted of three steel UHPC composite slabs were conducted to investigate the effect of shear connection degree on the structural behaviors of composite slabs. The bending test results revealed that the shear connection degree had a significantly influence on the failure modes and ultimate resistance of composite slabs and composite slab with connection degree of 96% in s hear span exhibited a ductile failure accompanied by the tensile yield of steel plate and crushing of UHPC. Finally, analytical model based on the failure mode of composite slabs was proposed to predict the ultimate resistance of steel UHPC composite slabs with different shear connection degrees at the interface.

Deterioration in strength of studs based on two-parameter fatigue failure criterion

  • Wang, Bing;Huang, Qiao;Liu, Xiaoling
    • Steel and Composite Structures
    • /
    • 제23권2호
    • /
    • pp.239-250
    • /
    • 2017
  • In the concept of two-parameter fatigue failure criterion, the material fatigue failure is determined by the damage degree and the current stress level. Based on this viewpoint, a residual strength degradation model for stud shear connectors under fatigue loads is proposed in this study. First, existing residual strength degradation models and test data are summarized. Next, three series of 11 push-out specimen tests according to the standard push-out test method in Eurocode-4 are performed: the static strength test, the fatigue endurance test and the residual strength test. By introducing the "two-parameter fatigue failure criterion," a residual strength calculation model after cyclic loading is derived, considering the nonlinear fatigue damage and the current stress condition. The parameters are achieved by fitting the data from this study and some literature data. Finally, through verification using several literature reports, the results show that the model can better describe the strength degradation law of stud connectors.

인장력을 받는 RC 부재와 철골 부재 접합부의 유한요소해석 (Finite Element Analysis of Connections between RC and Steel Member under Tensile Loading)

  • 김은주;김승훈;서수연;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.75-82
    • /
    • 2001
  • Finite element analysis using ANSYS program conducted to evaluate the tensile behavior of the connection between reinforced concrete and steel members is presented in this paper. It is assumed that there is a complete bond between head part of the stud and concrete. However, the surface of the column area of stud is separated from the concrete to stop the stress transmission between those. In case of using reinforcement connectors such as C or U type, the interface between concrete and reinforcement is idealized to have strong adhesion. Four concrete-steel specimens which are connected by stud connector or reinforcement connectors are compared and analyzed From the comparison, it was shown that the connection between concrete and steel could be predicted by using the modeling technique used in this paper.

  • PDF

경량콘크리트를 사용한 프리캐스트 바닥판에서 스터드 전단열결재의 전단강도 (Shear Strength of Stud Shear Connectors in Precast Concrete Deck using Lightweight Concrete)

  • 조선규;윤석구;이종민;김수현
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.414-417
    • /
    • 2006
  • In order to evaluate the shear strength of stud connectors in composite bridges using lightweight concrete decks, static push-out tests were performed. Sixteen push-out specimens were tested during this investigation. The test program consisted of two groups according to deck type, one is cast-in-place(CIP) concrete deck, the other is precast concrete deck. The experimental parameters were concrete compressive strength and bedding layer thickness. Based on the experimental results, the ultimate shear strength and the stiffness of shear connectors in lightweight concrete decks are assessed.

  • PDF

Mechanical characteristics of hollow shear connectors under direct shear force

  • Uenaka, Kojiro;Higashiyama, Hiroshi
    • Steel and Composite Structures
    • /
    • 제18권2호
    • /
    • pp.467-480
    • /
    • 2015
  • The steel-concrete composite decks have high fatigue durability and deformability in comparison with ordinary RC slabs. Withal, the steel-concrete composite deck is mostly heavier than the RC slabs. We have proposed herein a new type of steel-concrete composite deck which is lighter than the typical steel-concrete composite decks. This can be achieved by arranging hollow sectional members as shear connectors, namely, half-pipe or channel shear connectors. The present study aims to experimentally investigate mechanical characteristics of the half-pipe shear connectors under the direct shear force. The shear bond capacity and deformability of the half-pipe shear connectors are strongly affected by the thickness-to-diameter ratio. Additionally, the shear strengths of the hollow shear connectors (i.e. the half-pipe and the channel shear connectors) are compared. Furthermore, shear capacities of the hollow shear connectors equivalent to headed stud connectors are also discussed.

초고성능 콘크리트 바닥판을 위한 스터드 전단연결재의 정적 거동 (Static Behavior of Stud Shear Connector for UHPC Deck)

  • 이경찬;곽종원;박상혁;김지상
    • 콘크리트학회논문집
    • /
    • 제26권5호
    • /
    • pp.573-579
    • /
    • 2014
  • 합성보는 콘크리트 바닥판과 강재 거더로 이루어져 왔으나, 바닥판의 자중을 줄이면서 내구성을 향상시키고 나아가 교량의 강도 및 강성을 향상시키기 위하여 초고성능 콘크리트(UHPC)를 교량 바닥판으로 채용한 합성보가 최근에 제안되고 있다. 이 연구는 기존의 스터드 전단연결재가 UHPC 바닥판을 합성함에 있어 유효한지에 관하여 실험적으로 검토해보고자 한다. 12개의 push-out 시험체를 통하여 UHPC 바닥판에 매립된 스터드 전단연결재의 정적 강도를 평가하였으며, 실험 변수로 바닥판 두께, 스터드 높이 및 지름을 채택하여, 기존에 제한되었던 스터드 지름에 대한 높이의 비율인 형상비와 스터드 머리부 상부 콘크리트 피복두께의 제한을 완화하는 것이 가능한지에 대하여 검토하였다. 이 연구의 실험으로부터 기존 AASHTO LRFD에 제시된 정적 강도평가식을 UHPC에 매립된 스터드 전단연결재에 적용하는 것이 유효함을 확인하였으며, 4이상으로 제한된 형상비는 3.1까지 낮추어도 되며, 50 mm로 제한된 최소 피복두께도 25 mm까지 낮출수 있음을 확인하였다. 다만 Eurocode-4에 제시된 연성도 기준인 특성 상대슬립 6 mm 이상의 기준을 만족하지 못하여, UHPC에 매립된 스터드 전단연결재는 별도의 연성 보강 방안이 채택되지 않는다면 강성 전단연결재로 간주하여야 할 것이다.

Experimental investigation on flexural behaviour of HSS stud connected steel-concrete composite girders

  • Prakash, Amar;Anandavalli, N.;Madheswaran, C.K.;Lakshmanan, N.
    • Steel and Composite Structures
    • /
    • 제13권3호
    • /
    • pp.239-258
    • /
    • 2012
  • In this paper, experimental investigations on high strength steel (HSS) stud connected steel-concrete composite (SCC) girders to understand the effect of shear connector density on their flexural behaviour is presented. SCC girder specimens were designed for three different shear capacities (100%, 85%, and 70%), by varying the number of stud connectors in the shear span. Three SCC girder specimens were tested under monotonic/quasi-static loading, while three similar girder specimens were subjected to non-reversal cyclic loading under simply supported end conditions. Details of casting the specimens, experimental set-up, and method of testing, instrumentation for the measurement of deflection, interface-slip and strain are discussed. It is found that SCC girder specimen designed for full shear capacity exhibits interface slip for loads beyond 25% of the ultimate load capacity. Specimens with lesser degree of shear connection show lower values of load at initiation of slip. Very good ductility is exhibited by all the HSS stud connected SCC girder specimens. It is observed that the ultimate moment of resistance as well as ductility gets reduced for HSS stud connected SCC girder with reduction in stud shear connector density. Efficiency factor indicating the effectiveness of high strength stud connectors in resisting interface forces is estimated to be 0.8 from the analysis. Failure mode is primarily flexure with fracturing of stud connectors and characterised by flexural cracking and crushing of concrete at top in the pure bending region. Local buckling in the top flange of steel beam was also observed at the loads near to failure, which is influenced by spacing of studs and top flange thickness of rolled steel section. One of the recommendations is that the ultimate load capacity can be limited to 1.5 times the plastic moment capacity of the section such that the post peak load reduction is kept within limits. Load-deflection behaviour for monotonic tests compared well with the envelope of load-deflection curves for cyclic tests. It is concluded from the experimental investigations that use of HSS studs will reduce their numbers for given loading, which is advantageous in case of long spans. Buckling of top flange of rolled section is observed at failure stage. Provision of lips in the top flange is suggested to avoid this buckling. This is possible in case of longer spans, where normally built-up sections are used.