• Title/Summary/Keyword: Strut-and-tie

Search Result 201, Processing Time 0.025 seconds

Cyclic tests on RC joints retrofitted with pre-stressed steel strips and bonded steel plates

  • Yu, Yunlong;Yang, Yong;Xue, Yicong;Wang, Niannian;Liu, Yaping
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.675-684
    • /
    • 2020
  • An innovative retrofit method using pre-stressed steel strips and externally-bonded steel plates was presented in this paper. With the aim of exploring the seismic performance of the retrofitted RC interior joints, four 1/2-scale retrofitted joint specimens together with one control specimen were designed and subjected to constant axial compression and cyclic loading, with the main test parameters being the volume of steel strips and the existence of externally-bonded steel plates. The damage mechanism, force-displacement hysteretic response, force-displacement envelop curve, energy dissipation and displacement ductility ratio were analyzed to investigate the cyclic behavior of the retrofitted joints. The test results indicated that all the test specimens suffered a typical shear failure at the joint core, and the application of externally-bonded steel plates and that of pre-stressed steel strips could effectively increase the lateral capacity and deformability of the deficient RC interior joints, respectively. The best cyclic behavior could be found in the deficient RC interior joint retrofitted using both externally-bonded steel plates and pre-stressed steel strips due to the increased lateral capacity, displacement ductility and energy dissipation. Finally, based on the test results and the softened strut and tie model, a theoretical model for determining the shear capacity of the retrofitted specimens was proposed and validated.

SPMTool: A computer application for analysis of reinforced concrete structures by the Stringer-Panel Method - Validation of nonlinear models

  • Andre Felipe Aparecido de Mello;Leandro Mouta Trautwein;Luiz Carlos de Almeida;Rafael Alves de Souza
    • Computers and Concrete
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • The design of disturbed regions in reinforced concrete structures usually applies the well known Strut and Tie Method (STM). As an alternative, the Stringer-Panel Method (SPM), an intermediate model between STM and the Finite Element Method (FEM), consists in dividing a structure into two distinct elements: the stringers (which carry axial forces) and panels (which carry shear forces). SPM has already showed good applicability in manual calculations and computer implementations, and its most known application was SPanCAD, an AutoCAD plugin for linear and nonlinear analysis by SPM. Unfortunately, SPanCAD was discontinued by the developers, and it's not compatible with the most recent versions of AutoCAD. So, this paper aims to present a computer program that was developed as an upgrade to the latter: the Stringer Panel Modelling Tool (SPMTool), which is intended to be an auxiliary design tool and it presents improvements, in comparison to SPanCAD. It is possible to execute linear and nonlinear analysis by three distinct formulations: Modified Compression Field Theory (MCFT), Disturbed Stress Field Model (DSFM) and Softened Membrane Model (SMM). The nonlinear results were compared to experimental data of reinforced concrete elements that were not designed by SPM; these elements were also analyzed in SPanCAD. On overall, SPMTool made more realistic predictions to the behavior of the analyzed structures than SPanCAD. Except for DSFM predictions for corbels (1.24), in overall average, the ultimate load predictions were conservative (0.85 to 0.98), which is a good aspect for a design tool. On the other hand, the cracking load predictions presented overestimations (1.06 to 1.47) and higher variations (25.59% to 34.25%) and the post-cracking behavior could not be accurately predicted; for this use case, a more robust finite element software is recommended.

Full-scale testing on the flexural behavior of an innovative dovetail UHPC joint of composite bridges

  • Qi, Jianan;Cheng, Zhao;Wang, Jingquan;Zhu, Yutong;Li, Wenchao
    • Structural Engineering and Mechanics
    • /
    • v.75 no.1
    • /
    • pp.49-57
    • /
    • 2020
  • This paper presents a full-scale experimental test to investigate the flexural behavior of an innovative dovetail ultra-high performance concrete (UHPC) joint designed for the 5th Nanjing Yangtze River Bridge. The test specimen had a dimension of 3600 × 1600 × 170 mm, in accordance with the real bridge. The failure mode, crack pattern and structural response were presented. The ductility and stiffness degradation of the tested specimens were explicitly discussed. Test results indicated that different from conventional reinforced concrete slabs, well-distributed cracks with small spacing were observed for UHPC joint slabs at failure. The average nominal flexural cracking strength of the test specimens was 7.7 MPa, signifying good crack resistance of the proposed dovetail UHPC joint. It is recommended that high grade reinforcement be cooperatively used to take full advantage of the superior mechanical property of UHPC. A new ductility index, expressed by dividing the ultimate deflection by flexural cracking deflection, was introduced to evaluate the post-cracking ductility capacity. Finally, a strut-and-tie (STM) model was developed to predict the ultimate strength of the proposed UHPC joint.

Seismic resistance and mechanical behaviour of exterior beam-column joints with crossed inclined bars

  • Bakir, P.G.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.4
    • /
    • pp.493-517
    • /
    • 2003
  • Attempts at improving beam-column joint performance has resulted in non-conventional ways of reinforcement such as the use of the crossed inclined bars in the joint area. Despite the wide accumulation of test data, the influence of the crossed inclined bars on the shear strength of the cyclically loaded exterior beam-column joints has not yet been quantified and incorporated into code recommendations. In this study, the investigation of joints has been pursued on two different fronts. In the first approach, the parameters that influence the behaviour of the cyclically loaded beam-column joints are investigated. Several parametric studies are carried out to explore the shear resisting mechanisms of cyclically loaded beam-column joints using an experimental database consisting of a large number of joint tests. In the second approach, the mechanical behaviour of joints is investigated and the equations for the principal tensile strain and the average shear stress are derived from joint mechanics. It is apparent that the predictions of these two approaches agree well with each other. A design equation that predicts the shear strength of the cyclically loaded exterior beam-column joints is proposed. The design equation proposed has three major differences from the previously suggested design equations. First, the influence of the bond conditions on the joint shear strength is considered. Second, the equation takes the influence of the shear transfer mechanisms of the crossed inclined bars into account and, third, the equation is applicable on joints with high concrete cylinder strength. The proposed equation is compared with the predictions of the other design equations. It is apparent that the proposed design equation predicts the joint shear strength accurately and is an improvement on the existing code recommendations.

Application of a Mechanical Model for the Detailing of the End Anchorage Zone of Prestressed Concrete Members (프리스트레스 콘크리트 부재의 단부정착부의 배근상세를 위한 역학적 모델의 적용)

  • 강원호;방지환;김철희
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.4
    • /
    • pp.201-211
    • /
    • 1996
  • It is expected that recent development of the mechanical model will replace previous empirical methods of detailing. In this study, a mechanical model is proposed to analyze the behavior of the anchorage zone of prestressed concrete members. Main characteristics of the proposed model lies on its rational consideration of material properties, and concrete strength in biaxial stress state and that of local zone reinforced by spirals. Shear friction strength of concrete surrounding spirals are also considered. The results of' the proposed method as well as the known Strut-and-Tie method and nonlinear finite element analysis are compared with some typical experimental results. We get good agreement to the failure mode as well as the failure load from test results. And it can be shown that three dimentional failure mechanism, which cannot be expected by the method based on 2D analysis, can be explained by proposed model.

Study on seismic performance of exterior reinforced concrete beam-column joint under variable loading speeds or axial forces

  • Guoxi Fan;Wantong Xiang;Debin Wang;Zichen Dou;Xiaocheng Tang
    • Earthquakes and Structures
    • /
    • v.26 no.1
    • /
    • pp.31-48
    • /
    • 2024
  • In order to get a better understanding of seismic performance of exterior beam-column joint, reciprocating loading tests with variable loading speeds or axial forces were carried out. The main findings indicate that only few cracks exist on the surface of the joint core area, while the plastic hinge region at the beam end is seriously damaged. The damage of the specimen is more serious with the increase of the upper limit of variable axial force. The deflection ductility coefficient of specimen decreases to various degrees after the upper limit of variable axial force increases. In addition, the higher the loading speed is, the lower the deflection ductility coefficient of the specimen is. The stiffness of the specimen decreases as the upper limit of variable axial force or the loading speed increase. Compared to the influence of variable axial force, the influence of the loading speed on the stiffness degradation of the specimen is more obvious. The cumulative energy dissipation and the equivalent viscous damping coefficient of specimen decrease with the increase of loading speed. The influence of variable axial force on the energy dissipation of specimen varies under different loading speeds. Based on the truss model, the biaxial stress criterion, the Rankine criterion, the Kent-Scott-Park model, the equivalent theorem of shearing stress, the softened strut-and-tie model, the controlled slip theory and the proposed equations, a calculation method for the shear capacity is proposed with satisfactory prediction results.

Shear Strain Big-Bang of RC Membrane Panel Subjected to Shear (순수전단이 작용하는 RC막판넬의 전단변형률 증폭)

  • Jeong, Je Pyong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.101-110
    • /
    • 2015
  • Recently, nine $1397{\times}1397{\times}178mm$ RC panels were tested under in-plane pure-shear monotonic loading condition using the Panel Element Tester by Hsu (1997, ACI). By combining the equilibrium, compatibility, and the softened stress-strain relationship of concrete in biaxial state, Modern Truss Model (MCFT, RA-STM) are capable of producing the nonlinear analysis of RC membrane panel through the complicated trial-and-error method with double loop. In this paper, an efficient algorithm with one loop is proposed for the refined Mohr compatibility Method based on the strut-tie failure criteria. This algorithm can be speedy calculated to analyze the shear history of RC membrane element using the results of Hsu test. The results indicate that the response of shear deformation energy at Big Bang of shear strain significantly influenced by the principal compressive stress-strain (crushing failure).

Optimum Design of Reinforced Concrete Outrigger Wall Opening Using Piecewise Linear Interpolation (구간선형보간법을 이용한 철근콘크리트 아웃리거 벽체 개구부의 최적설계)

  • Lee, Hye-Lym;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.4
    • /
    • pp.217-224
    • /
    • 2020
  • In this study, a framework for optimizing the opening in an outrigger wall is proposed. To solve a constrained bounded optimization problem, an in-house finite element program and SQP algorithm in Python SciPy library are utilized. The openings of the outrigger wall are located according to the strut-tie behavior of the outrigger wall deep beam. A linear interpolation method is used to obtain differentiable continuous functions required for optimization, whereas a database is used for the efficiency of the optimization program. By comparing the result of the two-variable optimization through the moving path of the search algorithm, it is confirmed that the algorithm efficiently determines the optimized result. When the size of each opening is set to individual variables rather than the same width of all openings, the value of the objective function is minimized to obtain better optimization results. It was confirmed that the optimization time can be effectively reduced when using the database in the optimization process.

Estimation of Shear Strength Along Concrete Construction Joints Considering the Variation of Concrete Cohesion and Coefficient of Friction (콘크리트 시공줄눈 면에서 점착력 및 마찰계수의 변화를 고려한 전단내력 평가)

  • Yang, Keun-Hyeok;Kwon, Hyuck-Jin;Park, Jong-Beom
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.106-112
    • /
    • 2017
  • This paper presents a mathematical model derived from the upper-bound theorem of concrete plasticity to rationally evaluate the shear friction strength of concrete interfaces with a construction joint. The upper limit of the shear friction strength was formulated from the limit state of concrete crushing failure on the strut-and-tie action along the construction joints to avoid overestimating the shear transfer capacity of a transverse reinforcement with a high clamping force. The present model approach proposed that the cohesion and coefficient of friction of concrete can be set to be $0.27(f_{ck})^{0.65}$ and 0.95, respectively, for rough construction joints and $0.11(f_{ck})^{0.65}$ and 0.64, respectively, for smooth ones, where $f_{ck}$ is the compressive strength of concrete. From the comparisons with 155 data compiled from the available literature, the proposed model gave lower values of standard deviation and coefficient of variation of the ratios between predictions and experiments than AASHTO and fib 2010 equations, indicating that the proposed model has consistent trends with test results, unlike the significant underestimation results of such code equations in evaluating the shear friction strength.

Shear Behavior of High-Strength Concrete Deep Beams and Comparisons with ACI Shear Design Provisions (고강도 철근콘크리트 깊은 보의 전단거동 및 ACI 전단설계 기준과의 비교)

  • 정헌수;양근혁;함영삼
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.874-882
    • /
    • 2002
  • Currently, deep beams are designed according to ACT 318-99 equations derived from experimental data for slender beams with normal-strength concrete. In addition, there is relatively limited information on high-strength concrete deep beams with shear reinforcement. The purpose of this experimental study is to investigate the shear behavior of high-strength concrete deep beams and to grasp the conservatism of ACI shear design provisions. Experimental results on the shear behavior of 22 deep beams under two equal symmetrically placed point loads are reported. compressive strength of concrete cylinder was 800kgf/$\textrm{cm}^2$, and main variables were vertical and horizontal shear reinforcement and shear span-to-overall depth ratio (а/h). Test results showed that for high-strength concrete deep beams with shear span-to-overall depth ratio exceeding 0.75, the vertical shear reinforcement more effectively resisted the shear load than horizontal shear reinforcement. In high-strength concrete deep beams, ACI shear design provisions tended to underestimate the effect of strut-tie action and vertical shear reinforcement and overestimate the ones of horizontal shear reinforcement. Based on the experimental results of high-strength concrete deep beams and shear friction theory, this study modified the equations on the shear capacity specified by the ACI provisions.