• Title/Summary/Keyword: Strut-and-tie

Search Result 201, Processing Time 0.029 seconds

Effect of the Size and Location of a Web Opening on the Shear Behavior of High-Strength Reinforced Concrete Deep Beams (고강도 철근콘크리트 깊은 보의 전단거동에 대한 개구부 크기 및 위치의 영향)

  • Yang, Keun-Hyeok;Eun, Hee-Chang;Chung, Heon-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.697-704
    • /
    • 2003
  • The purpose of this experimental study is to investigate the relationship of the shear behavior and the variety of width, depth and location of an opening in reinforced concrete deep beams with rectangular web openings, and to present an improved shear strength equation of those members. The main parameters considered were concrete strength(fck), shear span-to-overall depth ratio(a/h), and the size and vortical position of the web openings. Twenty five deep beams were tested under two symmetric loading-points. Test results showed that the shear behavior of deep beams with web openings was influenced by a/h and the size of opening. In addition, the KCI shear design provision is a tendency to be more unconservative according to the increase in a/h and the area-ratio of opening to shear span(Ao/Ash). Based on the concrete strut action of top and bottom member of an opening and the tie action of longitudinal reinforcement, a proper design equation which closely predicts the capacity of deep beams with rectangular openings is developed.

Experimental and numerical study on tensile capacity of composite cable-girder anchorage joint

  • Xuefei Shi;Yuzhuo Zhong;Haiying Ma;Ke Hu;Zhiquan Liu;Cheng Zeng
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.215-230
    • /
    • 2023
  • Cable-girder anchorage joint is the critical part of cable-supported bridges. Tensile-plate anchorage (TPA) is one of the most commonly used types of cable-girder anchorage joints in steel girder cable-supported bridges. In recent years, it has been proposed by bridge designers to apply TPA to concrete girder cable-supported bridges to form composite cable-girder anchorage joint (CCGAJ). In this paper, the mechanical performance of CCGAJ under tensile force is studied through experimental and numerical analyses. Firstly, the effects of the external prestressing (EP) and the bearing plate (BP) on the mechanical performance of CCGAJ were investigated through three tests. Then, finite element model was established for parametrical study, and was verified by the experimental results. Then, the effects of shear connector forms, EP, BP, vertical rebar rate, and perforated rebar rate on the tensile capacity of CCGAJ were investigated through numerical analyses. The results show that the tensile capacity of CCGAJ depends on the first row of PR. The failure mode of CCGAJ using headed stud connectors is to form a shear failure surface at the end of the studs while the failure mode using PBLs is similar to the bending of a deep girder. Finally, based on the strut-and-tie model (STM), a calculation method for CCGAJ tensile capacity was proposed, which has a high accuracy and can be used to calculate the tensile capacity of CCGAJ.

Design Comparison by Node Width Variation of Strut-Tie-Model (스트럿-타이 모델의 절점 폭 변화에 따른 설계 비교)

  • Uy, Lymei;Son, Byung-Jik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.6329-6335
    • /
    • 2014
  • In the Strut-Tie-Model(STM), the width of a node is important in both analysis and design. Its effects on the force distribution at truss analogy system. In addition, it effects the verification of all struts and nodes, which need to be checked to satisfy the code of design. Code here refers to the ACI-318 code. Four methods were used to define the width of node: 1) effective depth is assumed to equal to 0.9 of the overall depth of beam, 2) moment equilibrium 3) assumption of the width of node at the bottom equal to 380mm, and 4) the new proposed method by this study. 106 selected samples of a parametric study obtained from the four methods were analyzed. Because total steel requirement from these four methods are similar, the easiest would be a good choice for a time saving calculation.

Shear strength and shear behaviour of H-beam and cruciform-shaped steel sections for concrete-encased composite columns

  • Keng-Ta Lin;Cheng-Cheng Chen
    • Steel and Composite Structures
    • /
    • v.47 no.3
    • /
    • pp.423-436
    • /
    • 2023
  • In this research, we tested 10 simply supported concrete-encased composite columns under monotonic eccentric loads and investigated their shear behaviour. The specimens tested were two reinforced concrete specimens, three steel-reinforced concrete (SRC) specimens with an H-shaped steel section (also called a beam section), and five SRC specimens with a cruciform-shaped steel section (also called a column section). The experimental variables included the transverse steel shape's depth and the longitudinal steel flange's width. Experimental observations indicated the following. (1) The ultimate load-carrying capacity was controlled by web compression failure, defined as a situation where the concrete within the diagonal strut's upper end was crushed. (2) The composite effect was strong before the crushing of the concrete outside the steel shape. (3) We adjusted the softened strut-and-tie SRC (SST-SRC) model to yield more accurate strength predictions than those obtained using the strength superposition method. (4) The MSST-SRC model can more reasonably predict shear strength at an initial concrete softening load point. The rationality of the MSST-SRC model was inferred by experimentally observing shear behaviour, including concrete crushing and the point of sharp variation in the shear strain.

EFFECT OF THE FLEXIBILITY OF AUTOMOTIVE SUSPENSION COMPONENTS IN MULTIBODY DYNAMICS SIMULATIONS

  • Lim, J.Y.;Kang, W.J.;Kim, D.S.;Kim, G.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.745-752
    • /
    • 2007
  • In this study, the effects of flexible bodies in vehicle suspension components were investigated to enhance the accuracy of multibody dynamic simulation results. Front and rear suspension components were investigated. Subframes, a stabilizer bar, a tie rod, a front lower control arm, a front knuckle, and front struts were selected. Reverse engineering techniques were used to construct a virtual vehicle model. Hard points and inertia data of the components were measured with surface scanning equipment. The mechanical characteristics of bushings and dampers were obtained from experiments. Reaction forces calculated from the multibody dynamics simulations were compared with test results at the ball joint of the lower control arm in both time-history and range-pair counting plots. Simulation results showed that the flexibility of the strut component had considerable influence on the lateral reaction force. Among the suspension components, the flexibility of the sub-frame, steering knuckle and upper strut resulted in better correlations with test results while the other flexible bodies could be neglected.

Deep-beams with indirect supports: numerical modelling and experimental assessment

  • Pimentel, Mario;Cachim, Paulo;Figueiras, Joaquim
    • Computers and Concrete
    • /
    • v.5 no.2
    • /
    • pp.117-134
    • /
    • 2008
  • An experimental and numerical research was conducted to gain a deeper insight on the structural behaviour of deep-beams with indirect supports and to assess the size effects in the ultimate state behaviour. The experimental campaign focused on the influence of the reinforcement tie distribution height on the compression check of the support region and on the benefits of using unbonded prestressing steel. Three reduced scale specimens were tested and used to validate the results obtained with a nonlinear finite element model. As a good agreement could be found between the numerical and the experimental results, the numerical model was then further used to perform simulations in large scale deep-beams, with dimensions similar to the ones to be adopted in a practical case. Two sources of size effects were identified from the simulation results. Both sources are related to the concrete quasi-brittle behaviour and are responsible for increasing failure brittleness with increasing structural size. While in the laboratory models failure occurred both in the experimental tests as well as in the numerical simulations after reinforcement yielding, the numerically analysed large scale models exhibited shear failures with reinforcement still operating in the elastic range.

Topology optimization of reinforced concrete structure using composite truss-like model

  • Yang, Zhiyi;Zhou, Kemin;Qiao, Shengfang
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.79-85
    • /
    • 2018
  • Topology optimization of steel and concrete composite based on truss-like material model is studied in this paper. First, the initial design domain is filled with concrete, and the steel is distributed in it. The problem of topology optimization is to minimize the volume of steel material and solved by full stress method. Then the optimized steel and concrete composite truss-like continuum is obtained. Finally, the distribution of steel material is determined based on the optimized truss-like continuum. Several numerical results indicate the numerical instability and rough boundary are settled. And more details of manufacture and construction can be presented based on the truss-like material model. Hence, the truss-like material model of steel and concrete is efficient to establish the distribution of steel material in concrete.

Optimum Design for Reducing Steering Error of Rack-and-Pinion Steering Linkage (랙-피니언 조향기구의 조향오차 최적설계)

  • 홍경진;최동훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.43-53
    • /
    • 1998
  • This paper addresses an optimization for reducing a steering error of a rack-and-pinion steering linkage with a MacPherson strut independent front suspension system. The length, orientations and inner joint positions of a tie-rod are selected as design variables and Ackerman geonetry, understeer effect, minimum turn radius, wheel alignment and packaging are considered as design constraints. Nonlinear kinematic analysis of the steering system is performed for calculating the values of cost and constraints, and Augmented Lagrange Multiplier(ALM) method is used for solving the constrained optinization problem. The optimization results show that the steering error are considerably reduced while satisfying all the constraints.

  • PDF

Lateral loading test for partially confined and unconfined masonry panels

  • Tu, Yi-Hsuan;Lo, Ting-Yi;Chuang, Tsung-Hua
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.379-390
    • /
    • 2020
  • Four full-scaled partially confined and unconfined masonry panels were tested with monotonic lateral loads. To study the effects of vertical force and boundary columns, two specimens with no boundary columns were subjected to different vertical forces, while two wing-wall specimens had the column placed eccentrically and in the middle, respectively. The specimens with no boundary columns exhibited ductile rocking behavior, where the lateral strength increased with increasing vertical compression. The wing-wall specimens with columns behaved as strut-and-tie systems. The column-panel interaction resulted in greater strength, lower deformation capacity and differences in failure modes. A comparison with analytical models showed that rocking strength can be accurately estimated using vertical force and the panel aspect ratio for panels with no boundary columns. The estimation for lateral strength on the basis of a panel section area indicated scattered error for wing-wall specimens.

Deflection prediction for reinforced concrete deep beams

  • Lu, Wen-Yao;Hwang, Shyh-Jiann;Lin, Ing-Jaung
    • Computers and Concrete
    • /
    • v.7 no.1
    • /
    • pp.1-16
    • /
    • 2010
  • A simplified method, developed from the softened strut-and-tie model, for determining the mid-span deflection of deep beams at ultimate state is proposed. The mid-span deflection and shear strength predictions of the proposed model are compared with the experimental data collected from 70 simply supported reinforced concrete deep beams, loaded with concentrated loads located at a distance a from an end reaction. The comparison shows that the proposed model can accurately predict the mid-span deflection and shear strength of deep beams with different shear span-to-depth ratios, different concrete strengths, and different horizontal and vertical hoops.