• 제목/요약/키워드: Strut-and-Tie models

검색결과 74건 처리시간 0.025초

ESO기법을 이용한 스트럿-타이 모델의 결정 (Determination of Strut-and-fie Models using Evolutionary Structural Optimization)

  • 곽효경;노상훈
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.295-302
    • /
    • 2002
  • This paper introduces a method to determine strut-tie models in reinforced concrete (RC) structures using the evolutionary structural optimization (ESO). Even though strut-tie models are broadly adapted in design of reinforced concrete members subjected to shear and torsion, conventional methods can hardly give correct models in RC members subjected to complex loadings and geometry conditions. In this paper, the basic idea of the ESO method is used to determine more rational strut-tie models. Since an optimum topology of structures, finally obtained by the ESO method, usually represents a truss-like structure, the ESO method can effectively be used in finding the best strut-tie model in RC structures. Several example structures are provided to demonstrate the capability of the proposed method in finding the best strut-tie model of each RC structure and to verify its efficiency in application to real design problems.

  • PDF

스트럿-타이 모텔을 이용한 RC 휨부재의 주기적 거동에 관한 연구 (Strut-and-Tie Models for RC Flexural Members under Cyclic Loading)

  • 이수곤;홍성걸
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.453-458
    • /
    • 2001
  • This paper presents the procedure to find the hysteresis loop of RC member using a modified strut-and-tie model. The forces and displacements at critical points, that are initial yielding point, target displacement point, unloading elastic limit, and reloading point after pinching, are investigated with the strut-and-tie models. Using bond-slip relationship, the elastic behavior of tie element is determined. The plastic flow behavior after flexural yielding is expressed by changing the location of longitudinal strut. Determination of pinching effect completes the initial hysteresis loop, assuming that the behavior of the opposite direction is symmetrical form.

  • PDF

3차원 스트럿-타이 모델을 이용한 외측 보-기둥 접합부의 강도 예측 (Strength Prediction of Exterior Beam-column Joint using 3D Strut-Tie Model)

  • 윤영묵;김병헌;이원석;신효정
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.183-186
    • /
    • 2005
  • The Current design procedures of ACI 318-02 and CEB-FIP for the exterior beam-column joints do not provide engineers with a clear understanding of the physical behavior of the beam-column joints. In this paper, the failure strengths of the exterior beam-column joint specimens tested to failure were evaluated using the approach implementing 3-dimensional strut-tie models, design criteria of ACI 318-02, ACI-ASCE committee 352 and Park and paulay, and softened strut-tie model approach. The analysis results obtained from the 3-dimensional strut-tie models were compared with those obtained from the other approaches, and the validity of the approach implementing 3-dimensional strut-tie models were examined.

  • PDF

스트럿-타이 모델을 이용한 개구부를 갖는 전단벽의 전단 설계 (Shear Design of Reinforced Concrete Shear Walls with Openings using Strut-and-Tie Models)

  • 홍성걸;장상기
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.244-247
    • /
    • 2004
  • This study proposes the design method of the shear walls with openings using strut-and-tie models. Strut-and-tie models are constructed for opening near the middle of the wall and for opening near a wall boundary. These enables an admissible load path for the horizontal earthquake force. These models consider the size and position of opening effectively. Each model is suitable for the seismic response corresponding with lateral forces in a given direction to be considered. The proposed models are good agreements with nonlinear finite element analysis(DIANA) results.

  • PDF

점진적 구조 최적화 기법을 이용한 철근 콘크리트 구조물의 전단 해석 (Shear Analysis of RC Structure using Evolutionary Structural Optimization)

  • 곽효경;양규영;신동규
    • 한국전산구조공학회논문집
    • /
    • 제24권3호
    • /
    • pp.319-328
    • /
    • 2011
  • 이 논문은 ESO 기법을 기초로 한 Strut-Tie 모델의 구성을 제안하고 있다. 평면응력 요소를 사용한 기존의 ESO방법과 달리, ESO기법에 의해 최적화된 구조가 트러스와 비슷한 형태를 가지는 사실에 기인하여, Strut-Tie 모델을 통한 전단설계에 트러스 요소를 사용한 ESO기법을 새롭게 적용하였다. 예제들을 통해 제안된 방법이 가장 좋은 Strut-Tie 모델을 찾을 수 있음을 입증하였으며, 앞서 2차원 평면응력 요소와 Strut-Tie 모델의 연관성에 대한 연구를 통해 ESO방법이 효과적으로 사용될 수 있음은 물론 경험하지 못한 특히 복잡한 철근 콘크리트 구조물의 전단설계에 효과적으로 사용이 가능한 대안이 될 수 있을 것으로 판단된다.

변형을 고려한 스트럿-타이 모델 (Concepts on Deformation Dependent Strut-and-Tie Models)

  • 홍성걸;장상기
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.209-212
    • /
    • 2005
  • This paper presents, basic concepts on deformation models for D-regions critical to shear. Strut-and-tie models are used to construct for deformation estimation at yielding and ultimate deformation. A generic: strut-and-tie model is proposed to investigate deformation patterns and failure mode identification. Superposition of the basic models enables us to explain deformation limits of arch action and truss action. Displacement at yielding is assessed by consideration of deformation of reinforcing steel only while the ultimate displacement is calculated by limits of ultimate strain of concrete in compression and failure mechanisms.

  • PDF

Evaluation of structural outrigger belt truss layouts for tall buildings by using topology optimization

  • Lee, Dong-Kyu;Kim, Jin-Ho;Starossek, Uwe;Shin, Soo-Mi
    • Structural Engineering and Mechanics
    • /
    • 제43권6호
    • /
    • pp.711-724
    • /
    • 2012
  • The goal of this study is to conceptually orientate optimized layouts of outrigger belt trusses which are in widespread use today in the design of tall buildings by strut-and-tie truss models utilizing a topology optimization method. In this study unknown strut-and-tie models are realized by using a typical SIMP method of topology optimization methods. In tradition strut-and-tie model designs find the appropriate strut-and-tie trusses along force paths with respect to elastic stress distribution, and then engineers or designers determine the most proper truss models by experience and intuition. It is linked to a trial-and-error procedure based on heuristic strategies. The presented strut-and tie model design by using SIMP provides that belt truss models are automatically and robustly produced by optimal layout information of struts-and-ties conforming to force paths without any trial-and-error. Numerical applications are studied to verify that outrigger belt trusses for tall buildings are optimally chosen by the proposed method for both static and dynamic responses.

3차원 스트럿-타이 모델을 이용한 파일캡의 강도예측 (Strength Prediction of Concrete Pile Caps Using 3-D Strut-Tie Models)

  • 박정웅;윤영묵
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.380-383
    • /
    • 2003
  • Deep pile caps usually contain no transverse shear reinforcement and only small percentages of longitudinal reinforcement. The current design procedures including ACI 318-02 for the pile caps do not provide engineers with a clear understanding of the physical behavior of deep pile caps. In this study, the failure strengths of nine pile cap specimens tested to failure were evaluated using 3-dimensional strut-tie models. The analysis results obtained from the present study were compared with those obtained from several design methods, and the validity of the present method implementing 3-dimensional strut-tie models was examined.

  • PDF

New strut-and-tie-models for shear strength prediction and design of RC deep beams

  • Chetchotisak, Panatchai;Teerawong, Jaruek;Yindeesuk, Sukit;Song, Junho
    • Computers and Concrete
    • /
    • 제14권1호
    • /
    • pp.19-40
    • /
    • 2014
  • Reinforced concrete deep beams are structural beams with low shear span-to-depth ratio, and hence in which the strain distribution is significantly nonlinear and the conventional beam theory is not applicable. A strut-and-tie model is considered one of the most rational and simplest methods available for shear strength prediction and design of deep beams. The strut-and-tie model approach describes the shear failure of a deep beam using diagonal strut and truss mechanism: The diagonal strut mechanism represents compression stress fields that develop in the concrete web between diagonal cracks of the concrete while the truss mechanism accounts for the contributions of the horizontal and vertical web reinforcements. Based on a database of 406 experimental observations, this paper proposes a new strut-and-tie-model for accurate prediction of shear strength of reinforced concrete deep beams, and further improves the model by correcting the bias and quantifying the scatter using a Bayesian parameter estimation method. Seven existing deterministic models from design codes and the literature are compared with the proposed method. Finally, a limit-state design formula and the corresponding reduction factor are developed for the proposed strut-andtie model.

스트럿-타이 모델을 이용한 PSC 박스거더 교량의 End Diaphragm의 설계 연구 (Design of End Diaphragms in PSC Box Girder Bridges Using a Strut-and-Tie Model)

  • 이창훈;윤영수;이만섭;김병석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.961-966
    • /
    • 2003
  • In recent, the design of diaphragm which is representative disturbed region in PSC box girder bridge have been performed according to the empirical method or beam theory. But, these methods couldn't be described the behavior of the end diaphragm, and placed reinforcements accurately. As the compressive stress transferred by the web concentrated on the lower parts of diaphragm, it was demonstrated that the basic assumption of 2-D strut-and-tie model for the diaphragm that the compressive stress acts on the upper parts of the diaphragm is wrong. Meanwhile, in this research, after analyzing the variables of end diaphragm, the 2-D strut-and-tie models appropriate to each cases are proposed. And, the problems of 2-D strut-and-tie model were analyzed, so 3-D strut-and-tie model is proposed as well. There is no codes which include the demonstration of safety of 3-D strut-and-tie model. Hence, for nodes, the stresses at the elements which included the singular node in strut-and-tie model were investigated using the finite element analysis. And, the stress states of strut has one direction, so effective stresses were considered at the stage, dimensioning of the model. From the results, 3-D strut-and-tie model could predict the behavior of end diaphragm accurately, and design of reinforcement could be performed economically.

  • PDF