• 제목/요약/키워드: Structure vibration

검색결과 4,325건 처리시간 0.029초

고체음의 수중방사소음 전달함수 (Transfer Function of Structure-borne Noise to Underwater Radiated Noise)

  • 김재승;김현실;김상렬
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.138-142
    • /
    • 2001
  • A comparison between theoretical and measured transfer function, which relates structure-borne noise source level to underwater radiated noise, of a naval ship is presented in this study. Transfer functions are obtained by dividing far field underwater noise by the value of structure borne noise source levels below machinery mounts. In prediction, statistical energy analysis of the whole ship structure is used to get vibration levels of wetted hull plates below water line. Then, far field radiated noise is calculated by summing up contributions from each plates using vibration levels and radiation efficiencies. And 1/3-octave band underwater sound pressure at the distance of 1 m away from the hull were measured to get experimental transfer functions. The two transfer functions are compared to show resonable agreements in spite of the subtle physical differences between each other.

  • PDF

파라미터 불확실성을 고려한 건물의 견실 진동 제어 (Robust Vibration Control for a Building with Parameter Uncertainty)

  • 최재원;김신종;이만형
    • 소음진동
    • /
    • 제10권4호
    • /
    • pp.575-583
    • /
    • 2000
  • In this paper, we design a vibration control system that includes a 3-D.O.F. mass-spring-damper structure for the analytical model of a building that is excited at the base of this structure by an external dynamic force, and one Active Mass Damper(AMD) on the top of this structure to generate control forces fro attenuation of the structural response. Two robust controllers based on $\mu$-synthesis and H$\infty$ optimal control are designed for the structural system to show that the performance of a control system can be degraded by some parameter uncertainties such as mass, stiffness coefficients, and/or damping coefficients. The performance of the two controllers are compared in terms of nominal performance, robust stability and robust performance by simulations.

  • PDF

와전류 감쇠기를 이용한 진동 억제 (Vibration Suppression Using Eddy Current Damper)

  • 곽문규;이명일;허석
    • 한국소음진동공학회논문집
    • /
    • 제13권10호
    • /
    • pp.760-766
    • /
    • 2003
  • This paper is concerned with the eddy current damper which can be used to enhance the damping of the host structure. The operating principle of the eddy current damper is first explained in detail. The dynamic interaction between the magnets and the copper plate produces eddy current thus resulting in the damping force. By attaching the eddy current damper to the host structure, the damping of the total structure can be increased so that vibrations can be suppressed. The advantage of the eddy current damper is that it doesn't require any electronic devices and power supply The effect of the eddy current damper on the global dynamic characteristics of the structure is investigated by considering the cantilever with the eddy current damper. Experimental results show that the eddy current damper is an effective device for vibration suppression.

Experimental evaluation of discrete sliding mode controller for piezo actuated structure with multisensor data fusion

  • Arunshankar, J.;Umapathy, M.;Bandhopadhyay, B.
    • Smart Structures and Systems
    • /
    • 제11권6호
    • /
    • pp.569-587
    • /
    • 2013
  • This paper evaluates the closed loop performance of the reaching law based discrete sliding mode controller with multisensor data fusion (MSDF) in real time, by controlling the first two vibrating modes of a piezo actuated structure. The vibration is measured using two homogeneous piezo sensors. The states estimated from sensors output are fused. Four fusion algorithms are considered, whose output is used to control the structural vibration. The controller is designed using a model identified through linear Recursive Least Square (RLS) method, based on ARX model. Improved vibration suppression is achieved with fused data as compared to single sensor. The experimental evaluation of the closed loop performance of sliding mode controller with data fusion applied to piezo actuated structure is the contribution in this work.

구조물의 동특성 개선을 위한 모드 매개변수의 민감도 해석 (The Sensitivity Analysis for Structure Modification using Partial Differentiation)

  • 이해진;아미누딘;이정윤;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.453-457
    • /
    • 2006
  • This study predicts the modified structure of eigenvectors and eigenvalues due to the changes in the mass and the stiffness of the structure. The sensitivity method of natural frequency using partial differential are derived with respect to the physical parameter to calculate the structure modification. The method are applied to the 3 degree of freedom???slumped mass model by modeling the mass and stiffness, and then applies the method to a real crankshaft system. The position, direction of parameter change and modified value were predicted for modification. Finally the predicted value is used to investigate the magnitude of vibration and we found that the effect of modification results to reduce the level of magnitude vibration is satisfactory.

  • PDF

비균질 Pasternak지반 위에 놓여진 후판의 자유진동해석 (Free Vibration Analysis of Thick Plates on Inhomogeneous Pasternak Foundation)

  • 김일중;오숙경;이효진;이용수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.852-857
    • /
    • 2003
  • This paper has the object of investigating natural frequencies of thick plates on inhomogeneous Pasternak foundation by means of finite element method and providing kinematic design data lot mat of building structures. This analysis was applied for design of substructure on elastic foundation. Mat of building structure may be consisdered as a thick plate on elastic foundation. Recently, as size of building structure becomes larger, mat area of building structure also tend to become target and building structure is supported on inhomogeneous foundation. In this paper, vibration analysis or rectangular thick plate is done by use or serendipity finite element with 8 nodes by considering shearing strain of plate. The solutions of this paper are compared with existing solutions and finite element solutions with 4${\times}$4 meshes of this analysis are shown the error of maximum 0.083% about the existing solutions. It is shown that natrural frequencies depend on not only Winkler foundation parameter but also shear foundation parameter.

  • PDF

와전류 감쇠기를 이용한 진동 억제 (Vibration Suppression Using Eddy Current Damper)

  • 곽문규;이명일;허석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.136-141
    • /
    • 2003
  • This paper is concerned with the eddy current damper which can be used to enhance the damping of the host structure. The operating principle of the eddy current damper is first explained in detail. The dynamic interaction between the magnets and the copper plate produces eddy current thus resulting in the damping force. By attaching the eddy current damper to the host structure, the damping of the total structure can be increased so that vibrations can be suppressed. The advantage of the eddy current damper is that it doesn't require any electronic devices and power supply. The effect of the eddy current damper on the global dynamic characteristics of the structure is investigated by considering the cantilever with the eddy current damper. Experimental results show that the eddy current damper is an effective device for vibration suppression.

  • PDF

Optimal distribution of the cable tensions and structural vibration control of the cable-cabin flexible structure

  • Qiu, Y.Y.;Duan, B.Y.;Wei, Q.;Nan, R.D.;Peng, B.
    • Structural Engineering and Mechanics
    • /
    • 제14권1호
    • /
    • pp.39-56
    • /
    • 2002
  • In order to trace a target in deep sky, a feed cabin 20 tons in weight used for a large radio telescope is drawn with six cables. To realize a smooth tracing all the time, optimal distribution of the cable tensions is explored. A set of cable-clog systems is utilized to control the wind-induced vibration of the cable-cabin structure. This is an attempt to apply the passive structural control strategy in the area of radio astronomy. Simulations of wind-induced vibration of the structure in both time and frequency domains offer a valuable reference for construction of the next generation large radio telescope.

Shaking Table Test of Steel Cylindrical Liquid Storage Tank Considering the Roof Characteristics

  • Bae, Doobyong;Park, Jang Ho
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1167-1176
    • /
    • 2018
  • Steel cylindrical tanks are widely used for the storage of hazardous substances of which leakage must be prevented under any circumstances. However, the dynamic response of the steel cylindrical liquid storage tank depends sensitively on the fluid-structure interaction and the vibration of the tank structure and necessitates clarification for the safety of the tank structure. This paper presents the results of shaking table tests performed to examine the dynamic behavior of a scaled cylindrical steel tank model considering the presence or not of fixed roof and added mass at the top of the tank for various fluid levels. The test results confirm the occurrence of both beam-type and oval-type vibration modes and show that the larger content of liquid inside the container amplified the acceleration along the height of the cylindrical tank. The oval-type vibration modes are seen to be more dominant in case of large water-to-structure mass ratio.

Active Vibration Control of a Structure with Output Feedback Based on Simultaneous Optimization Design Method

  • Kim, Young-Bok
    • Journal of Mechanical Science and Technology
    • /
    • 제14권1호
    • /
    • pp.57-64
    • /
    • 2000
  • Recent advances in the field of control theory have enabled us to design active vibration control systems for various structures. In many studies, the controller used to suppress vibration has been synthesized for the given mathematical model of structure. In these cases, the designer has not been able to utilize the degree of freedom to adjust the structural parameters of the control object. To overcome this problem, so called 'Structure/Control Simultaneous Optimization Method' is used. In this context of view, this paper is concerned with the active vibration control of bridge towers, platforms and ocean vehicles etc. Simultaneous design method is used to achieve optimal system performance. Here, a general framework for the simultaneous design problem of output feedback case is introduced based on LMI (Linear Matrix Inequality). The simulation results show that the proposed design method achieves desirable control performance.

  • PDF