• Title/Summary/Keyword: Structure color

Search Result 1,276, Processing Time 0.025 seconds

Anatomical Characteristics of Yellow-Hearted Pine (Pinus densiflora for. erecta Uyeki) (황장목(黃腸木)의 해부학적 특성)

  • Lee, Ae-Hee;Jang, Jae-Hyuk;Park, Byung-Ho;Kim, Nam-Hun
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.1
    • /
    • pp.56-61
    • /
    • 2014
  • Macroscopic and microscopic characteristics of Yellow-hearted pine and Red pine were investigated. Wood color, annual ring width and latewood percentage were observed by the naked eye. Anatomical properties as the structure of three sections and cell dimensions were examined by an optical microscopy. As a result, the color of bark in Yellow-hearted pine was Reddish-grey, and Red pine showed brown or gray. The color of heartwood and sapwood in Yellow-hearted pine was deep-yellow to brown and creamy-white. And the color of heartwood and sapwood in Red pine was light-brown and light-yellow. The annual ring width of Yellow-hearted pine was narrower than that of Red pine, and the latewood percentage of Yellow-hearted pine was a little higher than that of Red pine. There was no significant difference in the anatomical characteristics between Yellow-hearted pine and Red pine.

Spectroscopic Characteristics of Gemstones with Color Change Effect (변색 효과 보석들의 분광학적 특성)

  • Ahn, Yong-Kil;Seo, Jin-Gyo;Park, Jong-Wan
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.81-86
    • /
    • 2009
  • The luminescence and fluorescence were investigated by photoluminescence spectroscopy for six gemstones which exhibit color change effect. The shape of luminescence peaks appears different when observed by a photoluminescence spectroscopewith a 514 nm Ar laser source. However, it was not possible to observe the difference in the spectra between the natural and synthetic origins for the same type of gemstones. It was found that the photoluminescence spectrum was related to the crystal structure of the stones. Photoluminescence spectra using a 325 nm He-Cd source reveal that fluorescence is relatively strong for synthetic alexandrite, synthetic color change sapphire and natural alexandrite comparing to the rest of gemstones examined.

The Proposal of the Robust Fuzzy Wavelet Morphology Neural Networks Algorithm for Edge of Color Image (컬러 영상 에지에 강건한 퍼지 웨이브렛 형태학 신경망 알고리즘 제안)

  • Byun, Oh-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.2 s.46
    • /
    • pp.53-62
    • /
    • 2007
  • In this paper, it can propose that Fuzzy Wavelet Morphology Neural Networks for the edge detection algorithm with being robustly a unclear boundary parts by brightness difference and being less sensitivity on direction to be detected the edges of images. This is applying the Fuzzy Wavelet Morphology Operator which can be simple the image robustly without the loss of data to DTCNN Structure for improving defect which carrys out a lot of operation complexly. Also, this color image can segment Y image with YCbCr space color model which has a lossless feature information of edge boundary sides effectively. This paper can offer the simulation of color images of 50ea for the performance verification of the proposal algorithm.

  • PDF

TWO-COLOR CCD PHOTOMETRY OF THE INTERMEDIATE POLAR 1RXS J180340.0+401214

  • Kim, Yong-Gi;Yoon, Joh-Na;Andronov, Ivan L.;Breus, Vitalii V.;Smecker-Hane, Tammy A.;Chinarova, Lidia L.;Han, Won-Yong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.145.1-145.1
    • /
    • 2011
  • We present results of two-color VR photometry of the intermediate polar RXS J1803. The data were aquired using the Korean 1-m telescope located at Mt. Lemmon, USA. Different "high" and "low" luminosity states, similar to other intermediate polars, were discovered. No statistically significant variability of the color index with varying luminosity was detected. The orbital variability was found to be not statistically significant. Spin maxima timings were determined, as well as the photometric ephemeris for the time interval of our observations. The spin period variations, caused by interaction of the accretion structure with the rotating magnetic white dwarf, were also detected. These variations are of complicated character, and their study requires further observations. We determine the color transformation coefficients for our photometric systems, and improve on the secondary photometric standards.

  • PDF

Characteristics of Nylon6/Ionomer Semi IPN for Molded-In-Color Compound (나일론6/이오노머 Semi IPN의 몰드-인-칼라 수지 특성 연구)

  • Lee, Ja-Hun;Hwang, Jin-Taek;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.407-412
    • /
    • 2012
  • The characteristics of nylon6/ionomer semi interpenetrating networks (IPN) as a molded-in-color (MIC) compound had been studied, and comparison was made with nylon6/ionomer blends. Nylon6/ionomer semi IPN shows better homogeneity in phase morphology than nylon6/ionomer blend, and it caused better anti-scratching performance than the blend. This semi IPN structure resulted in lowered crystallization rate, increased melt viscosity and less temperature dependency of viscosity. As a result, we may expect the enhancement of melt processing characteristics in an injection molding process using nylon6/ionomer semi IPN as a MIC compound.

Synthesis and Luminescence of Sr2Si5N8:Eu2+ Red Phosphor for High Color-Rendering White LED (고연색 LED용 적색 Sr2Si5N8:Eu2+ 형광체의 합성 및 발광특성 연구)

  • Lee, Sung Hoon;Kim, Jong Su;Kang, Tae Wook;Ryu, Jong Ho;Lee, Sang Nam
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.11-15
    • /
    • 2017
  • Red phosphors, $Sr_2Si_5N_8:Eu^{2+}$, were synthesized as a single-phase crystal structure by optimizing carbon and $Eu^{2+}$ contents in a carbothermal reduction nitridation method. With increasing $Eu^{2+}$ contents, the photoluminescence spectra were red-shifted from 600 nm peak for 1 mol% for to 700 nm for 7 mol%. It was suggested that this red shift is attributed to the energy transfer from one low-energy sited $Eu^{2+}$ (1) to other high-energy sited $Eu^{2+}$ (2). Finally, the best red sample (620 nm emission peak and 80 nm half width for 3 mole% of $Eu^{2+}$) was packaged on a Blue LED together with two additional green and yellow phosphors, the fabricated White LED showed a high color-rendering index of 90 and white color coordinates of x= 0.321 and y = 0.305.

  • PDF

Studies on the Coating Structure and Printability of Coated Paper(III) - Effect of the interaction with pigments and ionic latices on the property of coated paper - (도공층 구조 및 도공지의 인쇄적성에 관한 연구(제3보) - 도공용 안료와 이온성 라텍스와의 상호작용이 도공지 품질에 미치는 영향 -)

  • Park, Kyu-Jae;Lee, Yong-Kyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.73-81
    • /
    • 1999
  • This paper was intended to evaluate the effect of the blending condition of pigments on the packing structure of coating color and the interaction between pigments and latices on the optical and interior properties of coated paper. It has been studied many ways to modify the coating structure to induce the interaction among coating components as followings ; 1) to use dispersant for pigment, 2) to control the charge density and the type of surface charge of latex, 3) to support the water retention by adding water retention agent or flow modifier. This paper was performed through the introduction of interaction between pigments which were two kinds of clays and one precipitated calcium carbonate(PCC) and ionic latices of which anionic and amphoteric respectively under the certain blending condition of pigments where their blending ratio of clays to calcium carbonate was 70pph to 30pph. The reason is that packing volume of pigments was highest in that region and thixotropical behavior appears in measuring rheology of coating color. We measured the properties of coating color, interaction with pigments and latex, and properties of coated paper and its printability. As a results, we could find out that amphoteric latex had a great influence on the interaction with pigments, especially clays, no matter what grade and also affected the coating structure significantly in case that this blending condition was 70(clays) to 30(PCC). It produced a powerful effect on the forming of bulky and smooth coating structure and in turn improved the printability of coated paper.

  • PDF

Development of Two-color Radiation Thermometer for Harsh Environments

  • Mohammed, Mohammed Ali Alshaikh;Kim, Ki-Seong
    • Journal of ILASS-Korea
    • /
    • v.21 no.4
    • /
    • pp.184-194
    • /
    • 2016
  • Many industrial processes require reliable temperature measurements in harsh environments with high temperature, dust, humidity, and pressure. However, commercially-available conventional temperature measurement devices are not suitable for use in such conditions. This study thus proposes a reliable, durable two-color radiation thermometer (RT) for harsh environments that was developed by selecting the appropriate components, designing a suitable mechanical structure, and compensating environmental factors such as absorption by particles and gases. The two-color RT has a simple, compactly-designed probe with a well-structured data acquisition system combined with efficient LabVIEW-based code. As a result, the RT can measure the temperature in real time, ranging from 300 to $900^{\circ}C$ in extremely harsh environments, such as that above the burden zone of a blast furnace. The error in the temperature measurements taken with the proposed two-color RT compared to that obtained using K-type thermocouple readouts was within 6.1 to $1.4^{\circ}C$ at a temperature range from 200 to $700^{\circ}C$. The effects of absorption by gases including $CO_2$, CO and $H_2O$ and the scattering by fine particles were calculated to find the transmittance of the two wavelength bands of operation through the path between the measured burden surface and the two-color probe. This method is applied to determine the transmittance of the short and long wavelength bands to be 0.31 and 0.51, respectively. Accordingly, the signals that were measured were corrected, and the true burden surface temperature was calculated. The proposed two-color RT and the correction method can be applied to measure temperatures in harsh environments where light-absorbing gases and scattering particles exist and optical components can be contaminated.

Polyperiodic-hole-array Plasmonic Color Filter for Minimizing the Effect of Angle of Incidence (입사광각의 영향을 최소화한 다결정 주기 구멍 배열 플라즈모닉 컬러 필터의 설계)

  • Jeong, Ki Won;Do, Yun Seon
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.3
    • /
    • pp.148-154
    • /
    • 2020
  • In this paper we propose a plasmonic color filter with a novel nanopattern. The suggested pattern, called a "polyperiodic hole array" (PPHA), is introduced to solve the angle dependence of the optical response that originates from the periodic structure. We set the diameter and period of the hole to make a green color filter, and set the unit-cell size and metal and dielectric thicknesses in consideration of the propagation length and skin depth. The periodic hole arrays are locally rotated to make a PPHA pattern, resulting in a globally aperiodic yet partially periodic pattern. As a result, compared to a general pattern, the PPHA nanostructured color filter has a maximum 40% improvement in spectral shift when the angle of incidence is increased from 0° to 30°. Transmittance reduction was also alleviated by 30%. This work will improve the performance of nanostructured color filters and help with nanotechnology being applied industrially to imaging devices, including displays and image sensors.

Study of Color Evolution by Silica Coating and Etching based Morphological Control of α-FeOOH (실리카 코팅과 에칭에 의한 α-FeOOH의 색상변화 연구)

  • Lee, NaRi;Yu, Ri;Kim, YooJin
    • Journal of Powder Materials
    • /
    • v.25 no.5
    • /
    • pp.379-383
    • /
    • 2018
  • Silica is used in shell materials to minimize oxidation and aggregation of nanoparticles. Particularly, porous silica has gained attention because of its performance in adsorption, catalysis, and medical applications. In this study, to investigate the effect of the density of the silica coating layer on the color of the pigment, we arbitrarily change the structure of a silica layer using an etchant. We use NaOH or $NH_4OH$ to etch the silica coating layer. First, we synthesize ${\alpha}-FeOOH$ for a length of 400 nm and coat it with TEOS to fabricate particles with a 50 nm coating layer. The coating thickness is then adjusted to 30-40 nm by etching the silica layer for 5 h. Four different shapes of ${\alpha}-FeOOH$ with different colors are measured using UV-vis light. From the color changes of the four different shapes of ${\alpha}-FeOOH$ features during coating or etching, the $L^*$ value is observed to increase and brighten the overall color, and the $b^*$ value increases to impart a clear yellow color to the pigment. The brightest yellow color was that coated with silica; if the sample is etched with NaOH or $NH_4OH$, the $b^*$ value can be controlled to study the yellow colors.