• Title/Summary/Keyword: Structure actuator

Search Result 709, Processing Time 0.02 seconds

A harmonic movable tooth drive system integrated with shape memory alloys

  • Xu, Lizhong;Cai, Zongxing;He, Xiaodong
    • Smart Structures and Systems
    • /
    • v.23 no.4
    • /
    • pp.319-327
    • /
    • 2019
  • Continuous rotating SMA actuators require motion conversion mechanisms, so their structure is relatively complex and difficult to realize the miniaturization. Here, a new type of continuous rotating actuator driven by SMA is proposed. It combines the movable tooth drive with SMA drive. The structure and working principle of the integrated movable tooth drive system is introduced. The equations of temperature, stress and strain of memory alloy wires, and the output torque of drive system are given. Using these equations, the temperature, the output forces of the SMA wires, and output torque of the drive system are studied. Results show that the compact drive system could give large output torque. To obtain large output torque plus small fluctuation, large eccentricity and small diameter of the SMA wire should be taken. Combined application of ventilation cooling and high current can increase the rotary speed of the drive system.

A Study on Shape Optimization of Distributed Actuators using Time Domain Finite Element Method (시간유한요소법을 이용한 분포형 구동기의 형상최적화에 관한 연구)

  • Suk, Jin-Young;Kim, You-Dan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.56-65
    • /
    • 2005
  • A dynamic analysis method that freezes a time domain by discretization and solves the spatial propagation equation has a unique feature that provides a degree of freedom on spatial domain compared with the space discretization or space-time discretization finite element method. Using this feature, the time finite element analysis can be effectively applied to optimize the spatial characteristics of distributed type actuators. In this research, the time domain finite element method was used to discretize the model. A state variable vector was used in the discretization to include arbitrary initial conditions. A performance index was proposed on spatial domain to consider both potential and vibrational energy, so that the resulting shape of the distributed actuator was optimized for dynamic control of the structure. It is assumed that the structure satisfies the final rest condition using the realizable control scheme although the initial disturbance can affect the system response. Both equations on states and costates were derived based on the selected performance index and structural model. Ricatti matrix differential equations on state and costate variables were derived by the reconfiguration of the sub-matrices and application of time/space boundary conditions, and finally optimal actuator distribution was obtained. Numerical simulation results validated the proposed actuator shape optimization scheme.

Damping and vibration response of viscoelastic smart sandwich plate reinforced with non-uniform Graphene platelet with magnetorheological fluid core

  • Eyvazian, Arameh;Hamouda, Abdel Magid;Tarlochan, Faris;Mohsenizadeh, Saeid;Dastjerdi, Ali Ahmadi
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.891-906
    • /
    • 2019
  • This study considers the instability behavior of sandwich plates considering magnetorheological (MR) fluid core and piezoelectric reinforced facesheets. As facesheets at the top and bottom of structure have piezoelectric properties they are subjected to 3D electric field therefore they can be used as actuator and sensor, respectively and in order to control the vibration responses and loss factor of the structure a proportional-derivative (PD) controller is applied. Furthermore, Halpin-Tsai model is used to determine the material properties of facesheets which are reinforced by graphene platelets (GPLs). Moreover, because the core has magnetic property, it is exposed to magnetic field. In addition, Kelvin-Voigt theory is applied to calculate the structural damping of the piezoelectric layers. In order to consider environmental forces applied to structure, the visco-Pasternak model is assumed. In order to consider the mechanical behavior of structure, sinusoidal shear deformation theory (SSDT) is assumed and Hamilton's principle according to piezoelasticity theory is employed to calculate motion equations and these equations are solved based on differential cubature method (DCM) to obtain the vibration and modal loss factor of the structure subsequently. The effect of different factors such as GPLs distribution, dimensions of structure, electro-magnetic field, damping of structure, viscoelastic environment and boundary conditions of the structure on the vibration and loss factor of the system are considered. In order to indicate the accuracy of the obtained results, the results are validated with other published work. It is concluded from results that exposing magnetic field to the MR fluid core has positive effect on the behavior of the system.

An Experimental Study for Electro-active Polymer Electrode and Actuator (전기활성 고분자 전극 및 구동기에 관한 실험적 연구)

  • Lee, Jun-Man;Ryu, Sang-Ryeoul;Lee, Dong-Joo;Lin, Zheng-Jie
    • Composites Research
    • /
    • v.26 no.5
    • /
    • pp.289-294
    • /
    • 2013
  • A thinner is used to improve the multi-walled carbon nano-tube (CNT) and carbon black (CB) dispersion in a polymer matrix and to make a soft electrode. The electrical and mechanical properties of the soft electrodes are investigated as functions of CNT, CB and thinner content. The optimal mixing condition for the electrode is thinner 80, CNT 3.5, CB 18 (phr) on the basis of matrix (KE-12). The specific resistance of that is 73 (${\Omega}{\cdot}cm$), and tensile strength, tensile modulus, and elongation of that is 0.45 MPa, 0.21 MPa, and 184%, respectively. Also, a simple structure of the actuator with an optimized electrode and elastomer is fabricated and its characteristic is evaluated. At the operating voltage 25 kV, the displacement of an elastomer KE-12 is 2.24 mm, and that of an elastomer KE-12 with thinner 50 (phr) is 4.05 mm. It shows a higher displacement compared to that of 3M 4910 which has similar modulus. The actuator made with elastomer and electrode of the same material (KE-12) may have advantages for fatigue life and application.

Actuation Performance of LIPCA and bare PZT at Active Vibration Control of a Cantilever Beam (압전 복합재료 작동기 LIPCA와 단일 PZT의 보 진동 제어 성능 비교)

  • ;Gu, Nam-Seo;Park, Hun-Cheol;Lee, Yeong-Jae;Yun, Gwang-Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.60-66
    • /
    • 2006
  • The purpose of this paper is to evaluate potential application of Lightweight Piezo-composite Actuator (LIPCA) to suppress vibrations of structures. The LIPCA, consisting of a piezoelectric layer, a carbon/epoxy layer and glass/epoxy layers, has advantages in terms of high performance, durability and reliability, compared to the bare piezoelectric ceramic (PZT) actuator. We performed two kinds of experiments on static actuation and active vibration suppression to investigate the actuation performances of the LIPCA and the bare PZT. We attached the actuator on one side and a strain gage on the other side of an aluminum beam. In the static actuation test, we evaluated the performance by comparing equivalent actuation moments of the LIPCA and the bare PZT due to the applied voltage. In the active vibration control test, control signals were generated to suppress the vibration of the beam by the PID control algorithm based on the measured strain signals. The performances were estimated based on settling times of the strain responses. It can be concluded that the LIPCA has better actuation performances than the bare PZT in active control of free vibration as well as static actuation.

Design of Electromechanical Actuator Capable of Simultaneous Control of Aerodynamic and Thrust Vector (공력과 추력방향 동시 제어가 가능한 전기식 구동장치 설계)

  • Lee, Ha Jun;Yoon, Kiwon;Song, In Seong;Park, Chang Kyoo;Lee, Young Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.1
    • /
    • pp.35-42
    • /
    • 2020
  • Electromechanical Actuator(EMA) for flight vehicles generally serves to control the fin deflection angle or the thrust vector angle. This paper deals with design and development of EMA for both aerodynamic control and thrust vector control. In this paper, a novel compact EMA is proposed that can simultaneously control both the tail fin and the jet vane with one actuator and detach the jet vane after vertical launch and rapid turn of the flight vehicle so as to increase efficiency during flying to target. To do this, we designed the EMA using a push-push link mechanism and derived a mathematical model. The mathematical model is validated by comparing simulation result and experimental data. The performance and reliability of the proposed EMA have been verified through performance test, environmental test and ground test. The proposed EMA is expected to be useful as an EMA for flight vehicles because of its simple and compact structure, as well as its performance and reliability.

A phase synthesis time reversal impact imaging method for on-line composite structure monitoring

  • Qiu, Lei;Yuan, Shenfang
    • Smart Structures and Systems
    • /
    • v.8 no.3
    • /
    • pp.303-320
    • /
    • 2011
  • Comparing to active damage monitoring, impact localization on composite by using time reversal focusing method has several difficulties. First, the transfer function of the actuator-sensor path is difficult to be obtained because of the limitation that no impact experiment is permitted to perform on the real structure and the difficulty to model it because the performance of real aircraft composite is much more complicated comparing to metal structure. Second, the position of impact is unknown and can not be controlled as the excitation signal used in the active monitoring. This makes it not applicable to compare the difference between the excitation and the focused signal. Another difficulty is that impact signal is frequency broadband, giving rise to the difficulty to process virtual synthesis because of the highly dispersion nature of frequency broadband Lamb wave in plate-like structure. Aiming at developing a practical method for on-line localization of impact on aircraft composite structure which can take advantage of time reversal focusing and does not rely on the transfer function, a PZT sensor array based phase synthesis time reversal impact imaging method is proposed. The complex Shannon wavelet transform is presented to extract the frequency narrow-band signals from the impact responded signals of PZT sensors. A phase synthesis process of the frequency narrow-band signals is implemented to search the time reversal focusing position on the structure which represents the impact position. Evaluation experiments on a carbon fiber composite structure show that the proposed method realizes the impact imaging and localization with an error less than 1.5 cm. Discussion of the influence of velocity errors and measurement noise is also given in detail.

Application of simple adaptive control to an MR damper-based control system for seismically excited nonlinear buildings

  • Javanbakht, Majd;Amini, Fereidoun
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1251-1267
    • /
    • 2016
  • In this paper, Simple Adaptive Control (SAC) is used to enhance the seismic response of nonlinear tall buildings based on acceleration feedback. Semi-active MR dampers are employed as control actuator due to their reliability and well-known dynamic models. Acceleration feedback is used because of availability, cost-efficiency and reliable measurements of acceleration sensors. However, using acceleration feedback in the control loop causes the structure not to apparently meet some requirements of the SAC algorithm. In addition to defining an appropriate SAC reference model and using inherently stable MR dampers, a modification in the original structure of the SAC is proposed in order to improve its adaptability to the situation in which the plant does not satisfy the algorithm's stability requirements. To investigate the performance of the developed control system, a numerical study is conducted on the benchmark 20-story nonlinear building and the responses of the SAC-controlled structure are compared to an $H_2/LQG$ clipped-optimal controller under the effect of different seismic excitations. As indicated by the results, SAC controller effectively reduces the story drifts and hence the seismically-induced damage throughout the structural members despite its simplicity, independence of structural parameters and while using fewer number of dampers in contrast with the $H_2/LQG$ clipped-optimal controller.

A new approach to deal with sensor errors in structural controls with MR damper

  • Wang, Han;Li, Luyu;Song, Gangbing;Dabney, James B.;Harman, Thomas L.
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.329-345
    • /
    • 2015
  • As commonly known, sensor errors and faulty signals may potentially lead structures in vibration to catastrophic failures. This paper presents a new approach to deal with sensor errors/faults in vibration control of structures by using the Fault detection and isolation (FDI) technique. To demonstrate the effectiveness of the approach, a space truss structure with semi-active devices such as Magneto-Rheological (MR) damper is used as an example. To address the problem, a Linear Matrix Inequality (LMI) based fixed-order $H_{\infty}$ FDI filter is introduced and designed. Modeling errors are treated as uncertainties in the FDI filter design to verify the robustness of the proposed FDI filter. Furthermore, an innovative Fuzzy Fault Tolerant Controller (FFTC) has been developed for this space truss structure model to preserve the pre-specified performance in the presence of sensor errors or faults. Simulation results have demonstrated that the proposed FDI filter is capable of detecting and isolating sensor errors/faults and actuator faults e.g., accelerometers and MR dampers, and the proposed FFTC can maintain the structural vibration suppression in faulty conditions.

Active Control of Structural Vibration Using An Instantaneous Control Algorithm including Acceleration Feedback (가속도가 포함된 순간최적제어 알고리듬을 이용한 구조물 진동의 능동제어)

  • 문석준;정태영
    • Journal of KSNVE
    • /
    • v.6 no.2
    • /
    • pp.215-224
    • /
    • 1996
  • Active vibration control is generally used to reduce vibration level by the actuators based on measured signal. Dynamic properties of a structure can be easily modified by the active vibration control, so that the vibration level may be effectively reduced to the magnitude below the allowable limit over a wide frequency rangs. In this paper, an instantaneous optimal control algorithm including acceleration feedback is presented for the active vibration control of large structures considering facts that the acceleration response can be easily measured, but the displacement and velocity response are obtained by numerically integrating the measured acceleration response with some errors. The adverse effect of the time delay is overcomed by taking into account the dynamic characteristics of an actuator and filters in the design of controller. Performance test is carried out using a hydraulic active mass driver on a test structure$(L{\times}W{\times}H;=;1200mm{\times}800mm{\times}1600mm, about;500kg)$ supported by four columns under base excitations. It is confirmed that the vibration level of the test structure are reduced to about 1/6 near resonance.

  • PDF