• Title/Summary/Keyword: Structure Modeling

Search Result 3,666, Processing Time 0.033 seconds

TMUML: A Singular TM Model with UML Use Cases and Classes

  • Al-Fedaghi, Sabah
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.127-136
    • /
    • 2021
  • In the systems and software modeling field, a conceptual model involves modeling with concepts to support development and design. An example of a conceptual model is a description developed using the Unified Modeling Language (UML). UML uses a model multiplicity formulation approach, wherein a number of models are used to represent alternative views. By contrast, a model singularity approach uses only a single integrated model. Each of these styles of modeling has its strengths and weaknesses. This paper introduces a partial solution to the issue of multiplicity vs. singularity in modeling by adopting UML use cases and class models into the conceptual thinging machine (TM) model. To apply use cases, we adopt the observation that a use-case diagram is a description that shows the internal structure of the part of the system represented by the use case in addition to being useful to people outside of the system. Additionally, the UML class diagram is recast in TM representation. Accordingly, we develop a TMUML model that embraces the TM specification of the UML class diagram and the internal structure extracted from the UML use case. TMUML modeling introduces some of the advantages that have made UML a popular modeling language to TM modeling. At the same time, this approach supplies UML with partial model singularity. The paper details experimentation with TMUML using examples from the literature. Our results indicate that mixing UML with other models could be a viable approach.

A Compact and Efficient Polygonal Mesh Representation (간결하고 효율적인 폴리곤 메쉬의 표현 구조)

  • Park S. K.;Lee S. H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.4
    • /
    • pp.294-305
    • /
    • 2004
  • Highly detailed geometric models are rapidly becoming commonplace in computer graphics and other applications. These complex models, which is often represented as complex1 triangle meshes, mainly suffer from the vast memory requirement for real-time manipulation of arbitrary geometric shapes without loss of data. Various techniques have been devised to challenge these problems in views of geometric processing, not a representation scheme. This paper proposes the new mesh structure for the compact representation and the efficient handling of the highly complex models. To verify the compactness and the efficiency, the memory requirement of our representation is first investigated and compared with other existing representations. And then we analyze the time complexity of our data structure by the most critical operation, that is, the enumeration of the so-called one-ring neighborhood of a vertex. Finally, we evaluate some elementary modeling functions such as mesh smoothing, simplification, and subdivision, which is to demonstrate the effectiveness and robustness of our mesh structure in the context of the geometric modeling and processing.

Modeling Techniques of the Complex Shear Wall Structure on a Common Foundation (공동기초상 복합 전단벽 구조물의 모델링 기법)

  • 김종수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.241-248
    • /
    • 1997
  • The super-structure in a soil-structure interaction analysis is commonly idealized as lumped parameter system. In this study, the complex shear wall structure is modeled using three different kinds of modeling techniques : 1) full FEM comparatively as an exact solution, 2)equivalent shear spring model assuming mainly shear deformations of the wall, 3) equivalent beam-stick model made by independent static analysis. Dynamic characteristics due to three different modeling methods are compared and investigated before performing structural response analysis. The beam-stick model in comparison to shear spring model gives closer dynamic responses when compared with the full FEM, even though it requires additional unit load static analyses.

  • PDF

Homology Modeling of GPR18 Receptor, an Orphan G-protein-coupled Receptor

  • Kothandan, Gugan;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.6 no.1
    • /
    • pp.16-20
    • /
    • 2013
  • G-protein-coupled receptor (GPCR) superfamily is the largest known receptor family, characterized by seven transmembrane domains and considered to be an important drug target. In this study we focused on an orphan GPCR termed as GPR18. As there is no X-ray crystal structure has been reported for this receptor, we report on a homology model of GPR18. Template structure with high homology was used for modeling and ten models were developed. A model was selected and refined by energy minimization. The selected model was further validated using various parameters. Our results could be a starting point for further structure based drug design.

Sensitivity analysis for optimal design of piezoelectric structures (압전지능구조물의 최적설계를 위한 민감도 해석)

  • 김재환
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.267-273
    • /
    • 1998
  • This study aims at performing sensitivity analysis of piezoelectric smart structure for minimizing radiated noise from the structure, The structure consists of a flat plate on which disk shaped piezoelectric actuator is mounted, and finite element modeling is used for the structure. The finite element modeling uses a combination of three dimensional piezoelectric, flat shell and transition elements so thus it can take into account the coupling effects of the piezoelectric device precisely and it can also reduce the degrees of freedom of the finite element model. Electric potential on the piezoelectric actuator is taken as a design variable and total radiated power of the structure is chosen as an objective function. The objective function can be represented as Rayleigh's integral equation and is a function of normal displacements of the structure. For the convenience of computation, all degrees of freedom of the finite element equation is condensed out except the normal displacements of the structure. To perform the design sensitivity analysis, the derivative of the objective function with respect to the normal displacements is found, and the derivative of the norma displacements with respect to the design variable is calculated from the finite element equation by using so called the adjoint variable method. The analysis results are compared with those of the finite difference method, and shows a good agreement. This sensitivity analysis is faster and more accurate than the finite difference method. Once the sensitivity analysis program is used for gradient-based optimizations, one could achieve a better convergence rate than non-derivative methods for optimal design of piezoelectric smart structures.

  • PDF

Structured Information Modeling and Query Method for SMIL Documents (SMIL 문서의 구조 정보 모델 및 검색)

  • 류은숙;이기호;이규철
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.3
    • /
    • pp.293-307
    • /
    • 2004
  • The SMIL(Synchronized Multimedia Integration Language) documents are represented as logical structure information, spatial layout structure information, temporal synchronization structure information and hyperlink structure information, according as the structural characteristics of SMIL documents based on XML. This paper proposes the effective modeling and query method for the multi -structure information of inherent SMIL documents. In particular, we present the object-oriented modeling by using UML class diagram in order to represent the objects classes for the structured information of SMIL documents, and the hierarchical structure and the relationships for the objects classes. In addition, the objects classes definition is specified in compliance with SQL3 for database standard language. We also propose the access method and the query representation for hierarchical structure in order to retrieve efficiently the structural objects of SMIL documents.

  • PDF

Numerical Study on Package Warpage as Structure Modeling Method of Materials for a PCB of Semiconductor Package (반도체 패키지용 PCB의 구조 모델링 방법에 따른 패키지의 warpage 수치적 연구)

  • Cho, Seunghyun;Ceon, Hyunchan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.59-66
    • /
    • 2018
  • In this paper, we analyzed the usefulness of single-structured printed circuit board (PCB) modeling by using numerical analysis to model the PCB structure applied to a package for semiconductor purposes and applying modeling assuming a single structure. PCBs with circuit layer of 3rd and 4th were used for analysis. In addition, measurements were made on actual products to obtain material characteristics of a single structure PCB. The analysis results showed that if the PCB was modeled in a single structure compared to a multi-layered structure, the warpage analysis results resulting from modeling the PCB structure would increase and there would be a significant difference. In addition, as the circuit layer of the PCB increased, the mechanical properties of the PCB, the elastic coefficient and inertia moment of the PCB increased, decreasing the package's warpage.

Modeling and scheduling for FMS using extended petri nets (확장된 Petri-net을 이용한 FMS의 모델링 및 스케쥴링)

  • 안인석;서기성;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.488-492
    • /
    • 1991
  • This paper deals with modeling and scheduling for flexible manufacturing systems(FMS). In modeling extended Petri nets are used to describe various and complex properties. To resolve multiple conflict without predefined properties, such as part selection, machine selection, rule-based scheduling method is introduced. This structure have a capability of on-line scheduling with systematic modeling description.

  • PDF

Interactive analysis tools for the wide-angle seismic data for crustal structure study (Technical Report) (지각 구조 연구에서 광각 탄성파 자료를 위한 대화식 분석 방법들)

  • Fujie, Gou;Kasahara, Junzo;Murase, Kei;Mochizuki, Kimihiro;Kaneda, Yoshiyuki
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.26-33
    • /
    • 2008
  • The analysis of wide-angle seismic reflection and refraction data plays an important role in lithospheric-scale crustal structure study. However, it is extremely difficult to develop an appropriate velocity structure model directly from the observed data, and we have to improve the structure model step by step, because the crustal structure analysis is an intrinsically non-linear problem. There are several subjective processes in wide-angle crustal structure modelling, such as phase identification and trial-and-error forward modelling. Because these subjective processes in wide-angle data analysis reduce the uniqueness and credibility of the resultant models, it is important to reduce subjectivity in the analysis procedure. From this point of view, we describe two software tools, PASTEUP and MODELING, to be used for developing crustal structure models. PASTEUP is an interactive application that facilitates the plotting of record sections, analysis of wide-angle seismic data, and picking of phases. PASTEUP is equipped with various filters and analysis functions to enhance signal-to-noise ratio and to help phase identification. MODELING is an interactive application for editing velocity models, and ray-tracing. Synthetic traveltimes computed by the MODELING application can be directly compared with the observed waveforms in the PASTEUP application. This reduces subjectivity in crustal structure modelling because traveltime picking, which is one of the most subjective process in the crustal structure analysis, is not required. MODELING can convert an editable layered structure model into two-way traveltimes which can be compared with time-sections of Multi Channel Seismic (MCS) reflection data. Direct comparison between the structure model of wide-angle data with the reflection data will give the model more credibility. In addition, both PASTEUP and MODELING are efficient tools for handling a large dataset. These software tools help us develop more plausible lithospheric-scale structure models using wide-angle seismic data.

A Study on the Design of Railway Electornic Interlocking Software Based on Real-Time Object-Oriented Modeling Technique (ROOM기법을 이용한 전자연동 소프트웨어 설계에 관한 연구)

  • Kim, Jong-Sun;Yoo, Ji-Yoon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.9
    • /
    • pp.439-446
    • /
    • 2001
  • This paper considers the design technique of the real-time control algorithm to implement the electronic interlocking system which is the most important station control system in railway signal field. The proposed technique consists of the structure design and the detail design which are based on the ROOM(Real-Time Object-Oriented Modeling). The structure design is designed with a modeling using the heuristic search technique which, at first, catch and make out the specific requested condition, and then, is designed on the requested condition. The detail design can be implemented if it may get the satisfying values through the repetitive modeling after comparing and examining the data obtained from the structure design in order for the more reliable and accurate system to be implemented. The technique proposed in this paper is implemented with C++ language which is easy to be transferred and compatible with the existing interfaces, and also the operating system is designed and simulated on the VRTX which is a real-time operating system. This proposed technique is applied to the typical station model in order to prove the validity as verifying the performance of the modeled station.

  • PDF