• Title/Summary/Keyword: Structure Equation Modeling analysis

Search Result 156, Processing Time 0.027 seconds

Vibration Control of Stiffened Hull Structure Using MFC Actuator (MFC 작동기를 이용한 보강 Hull 구조물의 능동 진동 제어)

  • Jeon, Jun-Cheol;Sohn, Jung-Woo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.273-278
    • /
    • 2011
  • This work presents an active vibration control of a stiffened hull structure using a flexible macro fiber composite (MFC) actuator. As first step, the governing equation of the hull structure is derived in a matrix form and its dynamic characteristics such as natural frequency are obtained via a finite element analysis (FEA). The natural frequencies obtained from the FEA are compared with those determined from experimental measurement. After formulating the control model in a state space representation, an optimal controller is designed in order to attenuate the vibration of the stiffened hull structure. The controller is then empirically realized through dSPACE and control responses are evaluated in time domain.

  • PDF

Vibration Control of Stiffened Hull Structure Using MFC Actuator (MFC 작동기를 이용한 보강 Hull 구조물의 능동 진동 제어)

  • Jeon, Jun-Cheol;Sohn, Jung-Woo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.7
    • /
    • pp.643-649
    • /
    • 2011
  • This work presents an active vibration control of a stiffened hull structure using a flexible macro fiber composite(MFC) actuator. As first step, the governing equation of the hull structure is derived in a matrix form and its dynamic characteristics such as natural frequency are obtained via a finite element analysis(FEA). The natural frequencies obtained from the FEA are compared with those determined from experimental measurement. After formulating the control model in a state space representation, an optimal controller is designed in order to attenuate the vibration of the stiffened hull structure. The controller is then empirically realized through dSPACE and control responses are evaluated in time domain.

A Study on the Signal Distortion Analysis using Full-wave Method at VLSI Interconnection (VLSI 인터커넥션에 대한 풀-웨이브 방법을 이용한 신호 왜곡 해석에 관한 연구)

  • 최익준;원태영
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.4
    • /
    • pp.101-112
    • /
    • 2004
  • In this paper, we developed a numerical analysis model by using ADI-FDTD method to analyze three-dimensional interconnect structure. We discretized maxwell's curl equation by using ADI-FDTD. Using ADI-FDTD method, a sampler circuit designed from 3.3 V CMOS technology is simplified to 3-metal line structure. Using this simplified structure, the time delay and signal distortion of complex interconnects are investigated. As results of simulation, 5∼10 ps of delay time and 0.1∼0.2 V of signal distortion are measured. As demonstrated in this paper, the full-wave analysis using ADI-FDTD exhibits a promise for accurate modeling of electromagnetic phenomena in high-speed VLSI interconnect.

Hybrid finite element model for wave transformation analysis (파랑 변형 해석을 위한 복합 유한요소 모형)

  • Jung Tae Hwa;Park Woo Sun;Suh Kyung Duck
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.209-212
    • /
    • 2002
  • Since Berkhoff proposed the mild-slope equation in 1972, it has widely been used for calculation of shallow water wave transformation. Recently, it was extended to give an extended mild-slope equation, which includes the bottom slope squared term and bottom curvature term so as to be capable of modeling wave transformation on rapidly varying topography. These equations were derived by integrating the Laplace equation vertically. In the present study, we develop a finite element model to solve the Laplace equation directly while keeping the same computational efficiency as the mild-slope equation. This model assumes the vertical variation of wave potential as a cosine hyperbolic function as done in the derivation of the mild-slope equation, and the Galerkin method is used to discretize . The computational domain was discretized with proper finite elements, while the radiation condition at infinity was treated by introducing the concept of an infinite element. The upper boundary condition can be either free surface or a solid structure. The applicability of the developed model was verified through example analyses of two-dimensional wave reflection and transmission. .

  • PDF

On the receding contact between a two-layer inhomogeneous laminate and a half-plane

  • Liu, Zhixin;Yan, Jie;Mi, Changwen
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.329-341
    • /
    • 2018
  • This paper considers the smooth receding contact problem between a homogeneous half-plane and a composite laminate composed of an inhomogeneously coated elastic layer. The inhomogeneity of the elastic modulus of the coating is approximated by an exponential function along the thickness dimension. The three-component structure is pressed together by either a concentrated force or uniform pressures applied at the top surface of the composite laminate. Both semianalytical and finite element analysis are performed to solve for the extent of contact and the contact pressure. In the semianalytical formulation, Fourier integral transformation of governing equations and boundary conditions leads to a singular integral equation of Cauchy-type, which can be numerically integrated by Gauss-Chebyshev quadrature to a desired degree of accuracy. In the finite element modeling, the functionally graded coating is divided into homogeneous sublayers and the shear modulus of each sublayer is assigned at its lower boundary following the predefined exponential variation. In postprocessing, the stresses of any node belonging to sublayer interfaces are averaged over its surrounding elements. The results obtained from the semianalytical analysis are successfully validated against literature results and those of the finite element modeling. Extensive parametric studies suggest the practicability of optimizing the receding contact peak stress and the extent of contact in multilayered structures by the introduction of functionally graded coatings.

Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure

  • Mehar, Kulmani;Panda, Subrata Kumar
    • Advances in nano research
    • /
    • v.7 no.3
    • /
    • pp.181-190
    • /
    • 2019
  • The thermal buckling temperature values of the graded carbon nanotube reinforced composite shell structure is explored using higher-order mid-plane kinematics and multiscale constituent modeling under two different thermal fields. The critical values of buckling temperature including the effect of in-plane thermal loading are computed numerically by minimizing the final energy expression through a linear isoparametric finite element technique. The governing equation of the multiscale nanocomposite is derived via the variational principle including the geometrical distortion through Green-Lagrange strain. Additionally, the model includes different grading patterns of nanotube through the panel thickness to improve the structural strength. The reliability and accuracy of the developed finite element model are varified by comparison and convergence studies. Finally, the applicability of present developed model was highlight by enlighten several numerical examples for various type shell geometries and design parameters.

Wet Drop Impact Response Analysis of CCS in Membrane Type LNG Carriers -I : Development of Numerical Simulation Analysis Technique through Validation- (멤브레인형 LNG선 화물창 단열시스템의 수면낙하 내충격 응답해석 -I : 검증을 통한 수치해석 기법 개발-)

  • Lee, Sang-Gab;Hwang, Jeong-Oh;Kim, Wha-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.726-734
    • /
    • 2008
  • While the structural safety assessment of Cargo Containment System(CCS) in membrane type LNG carriers has to be carried out in consideration of sloshing impact pressure, it is very difficult to figure out its dynamic response behaviors due to its very complex structural arrangements/materials and complicated phenomena of sloshing impact loading. For the development of its original technique, it is necessary to understand the characteristics of dynamic response behavior of CCS structure under sloshing impact pressure. In this study, for the exact understanding of dynamic response behavior of CCS structure in membrane Mark III type LNG carriers under sloshing impact pressure, its wet drop impact response analyses were carried out by using Fluid-Structure Interaction(FSI) analysis technique of LS-DYNA code, and were also validated through a series of wet drop experiments for the enhancement of more accurate shock response analysis technique. It might be thought that the structural response behaviors of impact response analysis, such as impact pressure impulses and resulted strain time histories, generally showed very good agreement with experimental ones with very appropriate use of FSI analysis technique of LS-DYNA code, finite element modeling and material properties of CCS structure, finite element modeling and equation of state(EOS) of fluid domain.

Estimation of Post Evaluation Index of Natural Disaster Prevention Projects using Structure Equation Modeling (구조방정식모델을 이용한 자연재해예방사업의 사후 평가 지수 산정)

  • Heo, Bo Young;Song, Jai Woo;Yoon, Sei Eui;Lee, Seung Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1807-1814
    • /
    • 2014
  • Natural disaster has been hard to prevent the occurrence of itself, thus in order to reduce the economic damages and loss casualties, it is important to be prepared in cases that the disasters should occur in advance. Interest of the related project to prevent various natural disasters has been grown along with an investment in Korea. Along with this movement, when investments related to natural disaster prevention projects were built on, the post evaluation that can verify the ripple effects of those investments on the community should be emerging as an essential task. For evaluating the effects of public investment projects such as natural disaster prevention projects in this study, the related researches would continue through qualitative analyses, for example, cost-benefit analysis. Even the qualitative analysis alone cannot fully explain the effects of those projects, the diverse methods of analyzing and evaluating those effects might not have been presented in those fields. For the post evaluation of natural disaster prevention projects through the qualitative analysis, this study derived subjects that had effects on the post evaluation of natural disaster prevention projects. Also, employing the structural equation modeling (SEM), the causation between post evaluation subjects and the effects of projects were quantitatively analyzed, and the weighting factors of evaluation items were calculated respectively. Based on these results, post evaluation index formula was proposed for the natural disaster prevention projects in Korea.

An Analysis on the Satisfaction Level of Specialty Shops for Environment-Friendly Agricultural Products (친환경농산물 전문매장의 서비스품질만족도 분석)

  • Seo, Dong-Woo;Heo, Seung-Wook
    • Korean Journal of Organic Agriculture
    • /
    • v.18 no.3
    • /
    • pp.315-329
    • /
    • 2010
  • This study focused on analysis of the satisfaction level of specialty shops for environment-friendly agricultural products (EFAP). To analyze the satisfaction level of EF AP, a series of household surveys were conducted. Questionnaire was prepared on the basis of the SERVQUAL model and the structural equation modeling was made on the basis of the contents surveyed. The main results of this study are summarized as follows. Firstly, tangibles structured with store clearance, neat uniform, information and others is the factor of service quality satisfaction. Secondly, reliability structured with service practice, problem solving, and service in accurate time is the factor of service quality satisfaction. Thirdly, assurance structured with the reliability of employees, sufficient knowledge of employees, courteous and good manner is the factor of service quality satisfaction. Fourthly, responsiveness structured with prompt service, voluntary help, customer response service and the like is the factor of service quality satisfaction. Fifthly, the sympathy structured in interest for each customer, provision of service in time convenient to use, encountering the customers with genuine feeling are the factors of service quality satisfaction. And sixthly, the service satisfaction factors would influence on the consumer behavior factors.

Performance Evaluation of Cascade Considering Fluid/Structure Coupling Deformation (유체/구조 연계 변형효과를 고려한 케스케이드의 성능평가)

  • Oh, Se-Won;Kim, Dong-Hyun;Kim, Yu-Sung;Park, Oung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.275-282
    • /
    • 2007
  • In this study, a fluid-structure interaction (FSI) analysis system has been developed in order to evaluate the turbine cascade performance with blade structural deformation effect. Relative movement of the rotor with respect to stator is reflected by modeling independent two computational domains. To consider the deformed position of rotor airfoil, dynamic moving grid method is applied. Reynolds-averaged Navier-Stokes equations with one equation Spalart-Allmaras and two-equation SST $k-{\varepsilon}$ turbulence models are solved to predict unsteady fluid dynamic loads. A fully implicit time marching scheme based on the Newmark direct integration method with high artificial damping is used to compute the fluid-structure interaction problem. Cascade performance evaluations for different elastic axis positions are presented and compared each other. It is importantly shown that the predicted aerodynamic performance considering structural deformation effect of blade can show some deviations compared to the data generally computed from rigid blade configurations and the position of elastic axis also tend to give sensitive effect.

  • PDF