• Title/Summary/Keyword: Structure Enhancement

Search Result 971, Processing Time 0.03 seconds

Effect of Compliant Structure in the Accelerated Heart Valve Fatigue Tester on the Surface Pitting of the Disk (기계식 인공판막의 표면 부식에 영향을 미치는 가속내구시험기의 컴플라이언스 구조에 관한 연구)

  • Kim, Dong-Uk;Lee, Hwan-Seong;Kim, Nam-Gyun
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.285-290
    • /
    • 1998
  • There are various reports on the fracture of mechanical heart valves implanted in human or animal, and they are pointed out that problems are induced by an erosion of disk surface, due to a cavitation effect. We have been investigating this mechanism using accelerated fatigue tester, and it was found that erosion was enhanced by a compliance effect in the test circuit. In this study, effects of compliance value and location on erosion were discussed, while disk closing velocity was measured by a high speed video camera. It was clarified that faster closing velocity was resulting in a enhancement of erosion on the disk surface.

  • PDF

Enhancement of Microstructural Homogeneity of W-Cu Pseudo-alloy by Adding W-Cu Composite Powder in Infiltration Process

  • Hong, Moon-Hee;Choi, Jae-Ho;Lee, Seong;Kim, Eun-Pyo;Noh, Joon-Woong;Lee, Sung-Ho;Kim, Young-Moo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.948-949
    • /
    • 2006
  • An infiltration technique using W-Cu composite powder has been developed to enhance microstructural uniformity of W-Cu pseudo-alloy. W-Cu composite powder, manufactured by reduction from $WO_3$ and CuO powder mixtures, were blended with W powder and then cold iso-statically pressed into a cylindrical bar under 150 MPa. The pressed samples were pre-sintered at $1300^{\circ}C$ for 1 hour under hydrogen to make a skeleton structure. This skeleton structure was more homogeneous than that formed by using W and Cu powder mixtures. The skeleton structures were infiltrated with Cu under hydrogen atmosphere. The infiltrated W-Cu pseudo-alloy showed homogeneous microstructure without Cu rich region

  • PDF

On Enhancing Test and Evaluation Process of Weapon Systems Development using DSM-Based Risk and Safety Management (DSM기법에 의한 위험 및 안전 관리를 통해 무기체계 시험평가 프로세스의 개선에 관한 연구)

  • Sim, Sang Hyun;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.2
    • /
    • pp.89-96
    • /
    • 2015
  • The weapon systems development has some distinct characteristics in that a big size of government budget (derived from national tax) has been expended frequently and the completion of the development projects seems to take long. Thus, the impact of the potential changes in the required operational capability on the development activities can induce some type of project risks. As such, proper management of project risk has been one of crucial subjects in the weapon systems development. Although a variety of methods can be considered, an approach based on the test and evaluation (T&E) process has been selected in this paper in order to appropriately handle those potential risks. In the study of the underlying T&E process, the safety consideration (for instance, explosiveness) of weapon systems is also included. To achieve the objective of the paper, a step-by-step procedure is first presented in the analysis of the T&E process. Then, to pursue some enhancement on the process, a set of necessary and useful activities are added in terms of risk and safety management. The resultant process is further analyzed and tailored based on a design structure matrix method. The case study of a tank development is also discussed.

Design of Parasitic Inductance Reduction in GaN Cascode FET for High-Efficiency Operation

  • Chang, Woojin;Park, Young-Rak;Mun, Jae Kyoung;Ko, Sang Choon
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.133-140
    • /
    • 2016
  • This paper presents a method of parasitic inductance reduction for high-speed switching and high-efficiency operation of a cascode structure with a low-voltage enhancement-mode silicon (Si) metal-oxide-semiconductor field-effect transistor (MOSFET) and a high-voltage depletion-mode gallium nitride (GaN) fielde-ffect transistor (FET). The method is proposed to add a bonding wire interconnected between the source electrode of the Si MOSFET and the gate electrode of the GaN FET in a conventional cascode structure package to reduce the most critical inductance, which provides the major switching loss for a high switching speed and high efficiency. From the measured results of the proposed and conventional GaN cascode FETs, the rising and falling times of the proposed GaN cascode FET were up to 3.4% and 8.0% faster than those of the conventional GaN cascode FET, respectively, under measurement conditions of 30 V and 5 A. During the rising and falling times, the energy losses of the proposed GaN cascode FET were up to 0.3% and 6.7% lower than those of the conventional GaN cascode FET, respectively.

A Study on the Performance Analysis of Environmental Improvement Fund for the Structural Advancement Project of the Old Industrial Complex (노후산업단지 구조고도화사업을 위한 환경개선펀드 성과분석에 관한 연구)

  • Kim, Jongha;Chung, Jaeho
    • Land and Housing Review
    • /
    • v.11 no.3
    • /
    • pp.21-31
    • /
    • 2020
  • This paper quantitatively analyzes the investment performance of the environmental improvement fund focusing on the sales effect and the housing benefit effect. The analysis of this study focused on the effects of sales and housing benefits for completed business sites among the business sites supported by the Environmental Improvement Fund. The analysis results are as follows. First, it appears that the sales effect of the completed workplace is effective compared to the amount of investment, so it seems that the purpose of industrial integration of the environment improvement fund is being achieved. Second, it was found that there are variations by workplace and region in housing benefits. This seems to be due to the fact that profitability can be neglected by reflecting the characteristics of residential facilities built by private businesses. The Environmental Improvement Fund is a policy fund that pursues both profitability and publicity. Therefore, it is necessary to transform the structure of the fund to expand support for industrial infrastructure with high publicity. To this end, it is necessary to establish a long-term management plan that equitably considers the profitability and publicity of the environmental improvement fund.

A Study on the Design of D/A Converter based on Data Weighted Average Technique for enhancement of reliability (혼합형 전류 구동 D/A 컨버터 설계 제작에 있어서 데이터 가중평균기법을)

  • Kim, S.D.;Woo, Y.S.;Kim, D.G.;Sung, M.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3215-3217
    • /
    • 1999
  • In this paper, a new structure of realizing switching control logic for Data Weighted Average Technique is suggested. It uses memory and adder for summing past binary input and this summed data is used to select one switch in control logic. This control logic acts in parallel regardless of resolution so increasing resolution don't affect on converting speed. In this reason, high speed and high resolution D/A converter based on Data Weighted Average Technique could be made. In this paper, 4 bits current mode thermometer code D/A converter is degined and simulated by using HSPICE. Simulated results show that new structure of D/A converter has more than 250MHz converting speed and less than 0.0003[LSB] INL error. It is very useful in low power circuit because of using 3.3 V supply voltage.

  • PDF

A Study on Capacitance Enhancement by Hemispherical Grain Silicon and Process Condition Properties (Hemispherical Grain Silicon에 의한 정전용량 확보 및 공정조건 특성에 관한 연구)

  • 정양희;정재영;이승희;강성준;이보희;유일현;최남섭
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.4
    • /
    • pp.809-815
    • /
    • 2000
  • The box capacitor structure with HSG-Si described here reliably achieves a cell capacitance of 28fF with a cell area of a $0.4820\mum^2$ for 128Mbit DRAM. An HSG-Si formation technology with seeding method, which employs Si2H6 molecule irradiation and annealing, was applied for realizing 64Mbit and larger DRAMS. By using this technique, grain size controlled HSG-Si can be fabricated on in-situ phosphorous doped amorphous silicon electrodes. The HSG-Si fabrication technology achieves twice the storage capacitance with high reliability for the stacked capacitors.The box capacitor structure with HSG-Si described here reliably achieves a cell capacitance of 28fF with a cell area of a $0.4820\mum^2$ for 128Mbit DRAM. An HSG-Si formation technology with seeding method, which employs Si2H6 molecule irradiation and annealing, was applied for realizing 64Mbit and larger DRAMS. By using this technique, grain size controlled HSG-Si can be fabricated on in-situ phosphorous doped amorphous silicon electrodes. The HSG-Si fabrication technology achieves twice the storage capacitance with high reliability for the stacked capacitors.

  • PDF

Efficient Top-Emitting Organic Light Emitting Diode with Surface Modified Silver Anode

  • Kim, Sung-Jun;Hong, Ki-Hyon;Kim, Ki-Soo;Lee, Ill-Hwan;Lee, Jong-Lam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.7
    • /
    • pp.550-553
    • /
    • 2010
  • The enhancement of quantum efficiency using a surface modified Ag anode in top-emitting organic light emitting diodes (TEOLEDs) is reported. The operation voltage at the current density of $1\;mA/cm^2$ of TEOLEDs decreased from 9.3 V to 4.3 V as the surface of anode coated with $CuO_x$ layer. The work function of these structures were quantitatively determined using synchrotron radiation photoemission spectroscopy. Secondary electron emission spectra revealed that the work function of the Ag/$CuO_x$ structure is higher by 0.6 eV than that of Ag. Thus, the $CuO_x$ structure acts as a role in reducing the hole injection barrier by about 0.6 eV, resulting in a decrease of the turn-on voltage of top-emitting light emitting diodes.

A Study on Measurement of In-Plane Displacement using ESPI in Mechanical Structure under torsional load (비틀림하중을 받는 기계구조물의 ESPI를 이용한 면내변위 측정에 관한 연구)

  • Jang, Seok-Won;Lee, Hak-Ju;Choe, Eun-O;Jeong, Chan-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.693-700
    • /
    • 2002
  • Recently, the mechanical structures applied to many industrial products, especially in electronic products, appear to be miniaturized and complicated. This trend makes it difficult to analyze the stress distribution of those mechanical structures and generates new challenges for precise measurement of strain. In order to solve this measurement problem many optical measurement techniques have been suggested. Among those, the ESPI(Electronic Speckle Pattern Interferometry) has been considered as one of the most useful tools. But the shortage of recognition and difficulties of measurement have limited its industrial applications in spite of its excellent capabilities. Therefore in this study, not only the verification of the FEA result but the enhancement of industrial application of ESPI was tried by measuring the in-plane displacement of mechanical structure with ESPI, which is difficult to be measured with strain gauge.

Proposed Approaches on Durability Enhancement of Small Structure fabricated on Camera Lens Surface (카메라 렌즈 표면에 형성된 미세 패턴의 내구성 향상 기법 제안)

  • Park, Hong Ju;Choi, In Beom;Kim, Doo-In;Jeong, Myung Yung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.5
    • /
    • pp.467-473
    • /
    • 2019
  • In this study, approached to improve durability of the multi-functional nano-pattern fabricated on the curved lens surface using nanoimprint lithography (NIL) was proposed, and the effects of the proposed methods on functionality after wear test were examined. To improve the mechanical property of ultraviolet(UV)-curable resin, UV-NIL was conducted at the elevated temperature around $60^{\circ}C$. In addition, micro/nano hierarchical structures was fabricated on the lens surface with a durable film mold. Analysis on the worn surfaces of nano-hole pattern and hierarchical structures and measurements on the static water contact angle and critical water volume for roll-off indicated that the UV curing process with elevated temperature is effective to maintain wettability by increasing hardness of resin. Also, it was found that the micro-scale pattern is effective to protect nano-pattern from damage during wear test.