• Title/Summary/Keyword: Structural-Mapping

Search Result 277, Processing Time 0.024 seconds

Advanced Approach for Performance Improvement of Deep Learningbased BIM Elements Classification Model Using Ensemble Model (딥러닝 기반 BIM 부재 자동분류 학습모델의 성능 향상을 위한 Ensemble 모델 구축에 관한 연구)

  • Kim, Si-Hyun;Lee, Won-Bok;Yu, Young-Su;Koo, Bon-Sang
    • Journal of KIBIM
    • /
    • v.12 no.2
    • /
    • pp.12-25
    • /
    • 2022
  • To increase the usability of Building Information Modeling (BIM) in construction projects, it is critical to ensure the interoperability of data between heterogeneous BIM software. The Industry Foundation Classes (IFC), an international ISO format, has been established for this purpose, but due to its structural complexity, geometric information and properties are not always transmitted correctly. Recently, deep learning approaches have been used to learn the shapes of the BIM elements and thereby verify the mapping between BIM elements and IFC entities. These models performed well for elements with distinct shapes but were limited when their shapes were highly similar. This study proposed a method to improve the performance of the element type classification by using an Ensemble model that leverages not only shapes characteristics but also the relational information between individual BIM elements. The accuracy of the Ensemble model, which merges MVCNN and MLP, was improved 0.03 compared to the existing deep learning model that only learned shape information.

Seismic performance of Bujian Puzuo considering scale ratio and vertical load effects

  • Yong-Hui Jiang;Jun-Xiao He;Lei Zhu;Lin-Lin Xie;Shuo Fang
    • Structural Engineering and Mechanics
    • /
    • v.90 no.5
    • /
    • pp.447-458
    • /
    • 2024
  • This study investigated the influence of scale ratio and vertical load on the seismic performance of Puzuo joints in traditional Chinese timber structures. Three low-cyclic reversed loading tests were conducted on three scaled specimens of Bujian Puzuo in Yingxian Wooden Pagoda. This study focused on the deformation patterns and analyzed seismic performance under varying scale ratios and vertical loads. The results indicated that the slip and rotational deformations of Bujian Puzuo were the primary deformations. The scale of the specimen did not affect the layer where the maximum interlayer slip occurred, but it did decrease the proportion of slip deformation. Conversely, the reducing vertical load caused the layer with the maximum slippage and the position of the damaged Dou components to shift upward, and the proportion of slip deformation increased. When the vertical load was decreased by 3.7 times, the maximum horizontal bearing capacity under positive and negative loadings, initial stiffness, and energy dissipation of the specimen decreased by approximately 60%, 58.79%, 69.62%, and 57.93%, respectively. The horizontal bearing capacity under positive loading and energy dissipation of the specimen increased by 35.63% and 131.54%, when the specimen scale was doubled and the vertical load was increased by 15 times.

Multiparametric Cardiac Magnetic Resonance Imaging Detects Altered Myocardial Tissue and Function in Heart Transplantation Recipients Monitored for Cardiac Allograft Vasculopathy

  • Muhannad A. Abbasi;Allison M. Blake;Roberto Sarnari;Daniel Lee;Allen S. Anderson;Kambiz Ghafourian;Sadiya S. Khan;Esther E. Vorovich;Jonathan D. Rich;Jane E. Wilcox;Clyde W. Yancy;James C. Carr;Michael Markl
    • Journal of Cardiovascular Imaging
    • /
    • v.30 no.4
    • /
    • pp.263-275
    • /
    • 2022
  • BACKGROUND: Cardiac allograft vasculopathy (CAV) is a complication beyond the first-year post-heart transplantation (HTx). We aimed to test the utility of cardiac magnetic resonance (CMR) to detect functional/structural changes in HTx recipients with CAV. METHODS: Seventy-seven prospectively recruited HTx recipients beyond the first-year post-HTx and 18 healthy controls underwent CMR, including cine imaging of ventricular function and T1- and T2-mapping to assess myocardial tissue changes. Data analysis included quantification of global cardiac function and regional T2, T1 and extracellular volume based on the 16-segment model. International Society for Heart and Lung Transplantation criteria was used to adjudicate CAV grade (0-3) based on coronary angiography. RESULTS: The majority of HTx recipients (73%) presented with CAV (1: n = 42, 2/3: n = 14, 0: n = 21). Global and segmental T2 (49.5 ± 3.4 ms vs 50.6 ± 3.4 ms, p < 0.001;16/16 segments) were significantly elevated in CAV-0 compared to controls. When comparing CAV-2/3 to CAV-1, global and segmental T2 were significantly increased (53.6 ± 3.2 ms vs. 50.6 ± 2.9 ms, p < 0.001; 16/16 segments) and left ventricular ejection fraction was significantly decreased (54 ± 9% vs. 59 ± 9%, p < 0.05). No global, structural, or functional differences were seen between CAV-0 and CAV-1. CONCLUSIONS: Transplanted hearts display functional and structural alteration compared to native hearts, even in those without evidence of macrovasculopathy (CAV-0). In addition, CMR tissue parameters were sensitive to changes in CAV-1 vs. 2/3 (mild vs. moderate/severe). Further studies are warranted to evaluate the diagnostic value of CMR for the detection and classification of CAV.

Sturctural Geometry of the Pyeongchang-Jeongseon Area of the Northwestern Taebaeksan Zone, Okcheon Belt (옥천대 북서부 태백산지역 평창-정선일대 지질구조의 기하학적 형태 해석)

  • Jang, Yirang;Cheong, Hee Jun
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.541-554
    • /
    • 2019
  • The Taebaeksan Zone of the Okcheon Belt is a prominent fold-thrust belt, preserving evidence for overlapped polyphase and diachronous orogenic events during crustal evolution of the Korean Peninsula. The Pyeongchang-Jeongseon area of the northwestern Taebaeksan Zone is fault-bounded on the western Jucheon and southern Yeongwol areas, showing lateral variations in stratigraphy and structural geometries. For better understanding these geological characteristics of the northwestern Taebaeksan Zone, we have studied the structural geometry of the Pyeongchang-Jeongseon area. For this, we have firstly carried out the SHRIMP U-Pb age analysis of the age-unknown sedimentary rock to clarify stratigraphy for structural interpretation. The results show the late Carboniferous to middle Permian dates, indicating that it is correlated to the Upper Paleozoic Pyeongan Supergroup. In addition to this, we interpreted the geometric relationships between structural elements from the detailed field investigation of the study area. The major structure of the northwestern Taebaeksan Zone is the regional-scale Jeongseon Great syncline, having NE-trending hinge with second-order folds such as the Jidongri and Imhari anticlines and the Nambyeongsan syncline. Based on the stereographic and down-plunge projections of the structureal elements, the structural geometry of the Jeongseon Great syncline can be interpreted as a synformal culmination, plunging slightly to the south at its southern area, and north at the northern area. The different map patterns of the northern and southern parts of the study area should be resulted in different erosion levels caused by the plunging hinges. Considering the Jeongseon Great syncline is the major structure that constrains the distribution of the Paleozoic strata of the Pyeongchang and Jeongseon areas, the symmetric repetition of the lower Paleozoic Joseon Supergroup in both limbs should be re-examined by structural mapping of the Hangmae and Hoedongri formations in the Pyeongchang and Jeongseon areas.

SLAM Method by Disparity Change and Partial Segmentation of Scene Structure (시차변화(Disparity Change)와 장면의 부분 분할을 이용한 SLAM 방법)

  • Choi, Jaewoo;Lee, Chulhee;Eem, Changkyoung;Hong, Hyunki
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.132-139
    • /
    • 2015
  • Visual SLAM(Simultaneous Localization And Mapping) has been used widely to estimate a mobile robot's location. Visual SLAM estimates relative motions with static visual features over image sequence. Because visual SLAM methods assume generally static features in the environment, we cannot obtain precise results in dynamic situation including many moving objects: cars and human beings. This paper presents a stereo vision based SLAM method in dynamic environment. First, we extract disparity map with stereo vision and compute optical flow. We then compute disparity change that is the estimated flow field between stereo views. After examining the disparity change value, we detect ROIs(Region Of Interest) in disparity space to determine dynamic scene objects. In indoor environment, many structural planes like walls may be determined as false dynamic elements. To solve this problem, we segment the scene into planar structure. More specifically, disparity values by the stereo vision are projected to X-Z plane and we employ Hough transform to determine planes. In final step, we remove ROIs nearby the walls and discriminate static scene elements in indoor environment. The experimental results show that the proposed method can obtain stable performance in dynamic environment.

Component-Z: A Formal Specification Language Extended Object-Z for Designing Components (Component-Z: Object-Z를 확장한 컴포넌트 정형 명세 언어)

  • 이종국;신숙경;김수동
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.5
    • /
    • pp.677-696
    • /
    • 2004
  • Component-based software engineering (CBSE) composes reusable components and develops applications with the components. CBSE is admitted to be a new paradigm that reduces the costs and times to develop software systems. The high quality of component designs can be assured if the consistency and correctness among the elements of a component are verified with formal specifications. Current formal languages for components include only some parts of contracts between interfaces, structural aspects and behavioral aspects of component, component-based system, component composition and variability. Therefore, it is not adequate to use current formal languages in all steps of a component design process. In this paper, we suggest a formal language to specify component designs Component-Z. Component-Z extends Object-Z, adds new notations to specify components. It can be possible to specify interfaces, the inner structure of a component, inner workflows, and workflows among interfaces with Component-Z. In addition, Component-Z provides the notations and semantics to specify variability with variation points, variants and required interfaces. The relation between interfaces and components is defined with mapping schemas. Parallel operator is used to specify component composition. It can be possible to describe deployed components with the specifications of component-based systems. Therefore, the formal specification language proposed in this paper can represent all elements to design components. In the case study, we specify an account management system in a bank so that we show that Component-Z can be used in all steps of component design.

Spectroscopic Comparison of Photo-oxidation of Outside and Inside of Hair by UVB Irradiation (자외선B 조사에 의한 모발 외부와 내부의 광산화에 관한 분광학적 비교)

  • Ha, Byung-Jo
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.220-225
    • /
    • 2020
  • Hair is made of proteins containing various amino acids. Ultraviolet (UV) radiation is believed to be responsible for the most damaging effects of sunlight, and also plays an important role in hair aging. The purpose of this study was to investigate the changes in morphological and chemical structures after ultraviolet B (UVB) irradiation of human hair. The UVB-irradiated hair showed characteristic morphological and structural changes, compared to those of the normal hair. The result from a scanning electron microscope (SEM) equipped with an energy dispersive X-ray diffractometer (EDX) showed that the scale of UV-irradiated hair appeared to be rough and the amount of oxygen element was higher than that of the normal hair. Fluorescence and three dimensional (3D) topographical images were obtained by a confocal laser scanning microscope (CLSM). In 3D images, the green emission intensity of normal hair was much higher than that of fluorescing UVB-irradiated hair. The intensity of green emission reflects the intrinsic fluorescence of hair protein. Also, a fluorescent imaging method using fluorescamine reagent was used to identify the free amino groups resulting from a peptide bond breakage in UVB-irradiated hair. Strong blue fluorescence of UVB-irradiated hair, which indicates a very high level of amino groups, was observed by CLSM. Therefore, the fluorescamine as an extrinsic fluorescence could provide a useful tool to identify the peptide bond breakage in UVB-irradiated hair. Infrared image mapping was also employed to assess the cross-sections of normal and UVB-irradiated specimens to examine the oxidation of disulfide bonds. The degree of peak areas with strong absorbance for the disulfide mono-oxide was spread from the outside to the inside of hair. The spectroscopic techniques used alone, or in combination, launch new possibilities in the field of hair cosmetics.

The Analysis of relation to brain iron deposition of Parkinson's Disease using Quantitative Susceptibility Mapping (정량적 자화율 맵핑을 통한 뇌 철분 침착과 파킨슨병의 연관성 분석)

  • Gyu-Ri Jeon;Han-Gyul Lee;Seung-won Kwon;Seung-Yeon Cho;Woo-Sang Jung;Sang-Kwan Moon;Jung-Mi Park;Chang-Nam Ko;Seong-Uk Park
    • The Journal of Korean Medicine
    • /
    • v.45 no.1
    • /
    • pp.150-164
    • /
    • 2024
  • Objectives: This study aimed to investigate the levels of brain iron deposition in Parkinson's disease (PD) patients using Quantitative Susceptibility Mapping (QSM) and to determine whether distinctions compared to the general population exist. Furthermore, we examined potential variations in iron deposition among different PD subtypes. Methods: Structural brain imaging was conducted on 75 participants at Gangdong Kyung Hee University Hospital between August 2017 and May 2020. PD patients were categorized into Tremor Dominant (TD) and Postural Instability and Gait Difficulty (PIGD) subtypes. Voxel-based morphometry and QSM were employed to compare voxel-wise magnetic susceptibility across the entire brain between Normal Controls (NC) and PD groups. Subsequently, QSM values were compared between TD and PIGD groups. Results: QSM values were compared among 46 PD patients and 23 normal controls, as well as between TD (n=22) and PIGD (n=24) groups. Voxel-based QSM analysis revealed no significant differences between groups. Similarly, ROI-based QSM analysis showed no significant distinctions. Conclusions: No significant variations were observed between the PD patient group, NC group, or PD subtypes. This study systematically compared QSM values across a broad range of brain regions potentially linked to PD pathology. Additionally, the subdivision of the PD group into TD and PIGD subtypes for QSM-based iron deposition analysis represents a meaningful and innovative approach.

Enhanced Electrical Conductivity of Gold Doped Graphene Films by Microwave Treatment

  • Kim, Yoo-Seok;Song, Woo-Seok;Cha, Myoung-Jun;Lee, Su-Il;Cho, Ju-Mi;Kim, Sung-Hwan;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.188-188
    • /
    • 2012
  • Graphene, with its unique physical and structural properties, has recently become a proving ground for various physical phenomena, and is a promising candidate for a variety of electronic device and flexible display applications. Compared to indium tin oxide (ITO) electrodes, which have a typical sheet resistance of ${\sim}60{\Omega}$/sq and ~85% transmittance in the visible range, the chemical vapor deposition (CVD) synthesized graphene electrodes have a higher transmittance in the visible to IR region and are more robust under bending. Nevertheless, the lowest sheet resistance of the currently available CVD graphene electrodes is higher than that of ITO. In this study, we report a creative strategy, irradiation of microwave at room temperature under vacuum, for obtaining size-homogeneous gold nano-particle doping on graphene. The gold nano-particlization promoted by microwave irradiation was investigated by transmission electron microscopy, electron energy loss spectroscopy elemental mapping. These results clearly revealed that gold nanoparticle with ${\geq}30$ nm in mean size were decorated along the surface of the graphene after microwave irradiation. The fabrication high-performance transparent conducting film with optimized doping condition showed a sheet resistance of ${\geq}100{\Omega}$/sq. at ~90% transmittance. This approach advances the numerous applications of graphene films as transparent conducting electrodes.

  • PDF

NUMERICAL STUDY ON THE UNSTEADY FLOW PHYSICS OF INSTECTS' FLAPPING FLIGHT USING FLUID-STRUCTURE INTERACTION (FSI를 활용한 2차원 곤충날개 주위 유동장 해석)

  • Lee, K.B.;Kim, J.H.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.151-158
    • /
    • 2009
  • To implement the insects' flapping flight for developing flapping MAVs(micro air vehicles), the unsteady flow characteristics of the insects' forward flight is investigated. In this paper, two-dimensional FSI(Fluid-Structure Interaction) simulations are conducted to examine realistic flow features of insects' flapping flight and to examine the flexibility effects of the insect's wing. The unsteady incompressible Navier-Stokes equations with an artificial compressibility method are implemented as the fluid module while the dynamic finite element equations using a direct integration method are employed as the solid module. In order to exchange physical information to each module, the common refinement method is employed as the data transfer method. Also, a simple and efficient dynamic grid deformation technique based on Delaunay graph mapping is used to deform computational grids. Compared to the earlier researches of two-dimensional rigid wing simulations, key physical phenomena and flow patterns such as vortex pairing and vortex staying can still be observed. For example, lift is mainly generated during downstroke motion by high effective angle of attack caused by translation and lagging motion. A large amount of thrust is generated abruptly at the end of upstroke motion. However, the quantitative aspect of flow field is somewhat different. A flexible wing generates more thrust but less lift than a rigid wing. This is because the net force acting on wing surface is split into two directions due to structural flexibility. As a consequence, thrust and propulsive efficiency was enhanced considerably compared to a rigid wing. From these numerical simulations, it is seen that the wing flexibility yields a significant impact on aerodynamic characteristics.

  • PDF