• Title/Summary/Keyword: Structural-Mapping

Search Result 277, Processing Time 0.023 seconds

Influence of loading rate on flexural performance and acoustic emission characteristics of Ultra High Performance Concrete

  • Prabhat Ranjan Prem;Vignesh Kumar Ramamurthy;Vaibhav Vinod Ingle;Darssni Ravichandran;Greeshma Giridhar
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.617-626
    • /
    • 2024
  • The study investigated the behavior of plain and fibered Ultra-High Performance Concrete (UHPC) beams under varying loading conditions using integrated analysis of the flexure and acoustic emission tests. The loading rate of testing is -0.25 -2 mm/min. It is observed that on increasing loading rate, flexural strength increases, and toughness decreases. The acoustic emission testing revealed that higher loading rates accelerate crack propagation. Fiber effect and matrix cracking are identified as significant contributors to the release of acoustic emission energy, with fiber rupture/failure and matrix cracking showing rate-dependent behavior. Crack classification analysis indicated that the rise angle (RA) value decreased under quasi-static loading. The average frequency (AF) value increased with the loading rate, but this trend reversed under rate-dependent conditions. K-means analysis identified distinct clusters of crack types with unique frequency and duration characteristics at different loading rates. Furthermore, the historic index and signal strength decreased with increasing loading rate after peak capacity, while the severity index increased in the post-peak zone, indicating more severe damage. The sudden rise in the historic index and cumulative signal strength indicates the possibility of several occurrences, such as the emergence of a significant crack, shifts in cracking modes, abrupt failure, or notable fiber debonding/pull-out. Moreover, there is a distinct rise in the number of AE knees corresponding to the increase in loading rate. The crack mapping from acoustic emission testing aligned with observed failure patterns, validating its use in structural health monitoring.

Influence of Lateral Bracing on Lateral Buckling of Short I-Beams Under Repeated Loadings (반복하중을 받는 짧은 I형 보의 횡좌굴에 대한 횡브레이싱의 영향에 관한 고찰)

  • 이상갑
    • Computational Structural Engineering
    • /
    • v.5 no.1
    • /
    • pp.109-118
    • /
    • 1992
  • Lateral bracing has long been used in design practice to enhance the carrying capacity of the lateral buckling of the beam. Many factors, critically important to lateral bracing performance, do not appear in design formulas. Some of these factors are discussed in this study for the application to short I - beams under repeated loadings through parametric studies with an analytical model : the brace location along the length of the beam, the height of the bracing above the shear center of the beam, and the strength and stiffness of the brace. The parametric studies are carried out using a propped cantilever arrangement, and also using a geometrically (fully) nonlinear beam model for the brace as well as the beam to capture the system buckling. An idealized bracing system is configured to restrain lateral motion, but not rotation. A multiaxial cyclic plasticity model is also implemented to better represent cyclic metal plasticity in conjunction with a consistent return mapping algorithm.

  • PDF

General Response for Lateral-Torsional Buckling of Short I-Beams Under Repeated Loadings (반복하중을 받는 짧은 I형 보의 횡-비틀림 좌굴의 일반적 응답에 관한 고찰)

  • 이상갑
    • Computational Structural Engineering
    • /
    • v.5 no.1
    • /
    • pp.119-132
    • /
    • 1992
  • The objective of this study is to perform extensive parametric studies of the lateral-torsional buckling of short 1-beams under repeated loadings, and to gain a further insight into the lateral-torsional beam buckling problem. A one-dimensional geometrically (fully) nonlinear beam model is used, which includes superposed infinitesimal transverse warping deformation in addition to finite torsional warping deformation. A multiaxial cyclic plasticity model is also implemented to better represent cyclic metal plasticity in conjunction with a consistent return mapping algorithm. The general response for the lateral-torsional buckling of short I-beams under repeated loadings is examined through several parametric studies around the standard case : the material yield strength, the yield plateau, the strain hardening, the kinematic hardening, the residual stresses, the load eccentricity with respect to the shear center, the height of the load with respect to the cross-section of the beam, the location of the load along the length of the beam, the dimensions of the cross-section of the beam and the fixity of the supported end remote from the load.

  • PDF

Finite Element Analysis of Strain Localization in Concrete Considering Damage and Plasticity (손상과 소성을 고려한 콘크리트 변형률 국소화의 유한요소해석)

  • 송하원;나웅진
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.241-250
    • /
    • 1997
  • The strain localization of concrete is a phenomenon such that the deformation of concrete is localized in finite region along with softening behavior. The objective of this paper is to develop a plasticity and damage algorithm for the finite element analysis of the strain-localization in concrete. In this paper, concrete member under strain localization is modeled with localized zone and non-localized zone. For modeling of the localized zone in concrete under strain localization, a general Drucker-Prager failure criterion by which the nonlinear strain softening behavior of concrete after peak-stress can be considered is introduced in a thermodynamic formulation of the classical plasticity model. The return-mapping algorithm is used for the integration of the elasto-plastic rate equation and the consistent tangent modulus is also derived. For the modeling of non-localized zone in concrete under strain localization, a consistent nonlinear elastic-damage algorithm is developed by modifying the free energy in thermodynamics. Using finite element program implemented with the developed algorithm, strain localization behaviors for concrete specimens under compression are simulated.

  • PDF

Development of MLS Difference Method for Material Nonlinear Problem (MLS차분법을 이용한 재료비선형 문제 해석)

  • Yoon, Young-Cheol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.237-244
    • /
    • 2016
  • This paper presents a nonlinear Moving Least Squares(MLS) difference method for material nonlinearity problem. The MLS difference method, which employs strong formulation involving the fast derivative approximation, discretizes governing partial differential equation based on a node model. However, the conventional MLS difference method cannot explicitly handle constitutive equation since it solves solid mechanics problems by using the Navier's equation that unifies unknowns into one variable, displacement. In this study, a double derivative approximation is devised to treat the constitutive equation of inelastic material in the framework of strong formulation; in fact, it manipulates the first order derivative approximation two times. The equilibrium equation described by the divergence of stress tensor is directly discretized and is linearized by the Newton method; as a result, an iterative procedure is developed to find convergent solution. Stresses and internal variables are calculated and updated by the return mapping algorithm. Effectiveness and stability of the iterative procedure is improved by using algorithmic tangent modulus. The consistency of the double derivative approximation was shown by the reproducing property test. Also, accuracy and stability of the procedure were verified by analyzing inelastic beam under incremental tensile loading.

Civil Infrastructure Information Modeling Method Based on Extended IFC Entities using BIM Authoring Software (BIM 소프트웨어를 활용한 토목 시설물 IFC 확장요소기반의 정보모델링 방안)

  • Lee, Sang-Ho;Park, Sang I.;Kwon, Tae-Ho;Seo, Kyung-Wan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.1
    • /
    • pp.77-86
    • /
    • 2017
  • Industry Foundation Classes(IFC) is the core product schema for ensuring the interoperability of information in Building Information Modeling(BIM) environment. However, since current IFC is mainly focused on building structure. there are limitations in the generation of functional information of components when applied to civil infrastructures. Previous studies have proposed IFC-based new entities for the civil infrastructures, it takes long time to support them in BIM authoring software packages. In this study, we proposed practical rules to apply IFC-based information modeling using BIM authoring software and additional new entities for the civil infrastructure through attributes and information mapping. The availabilities of proposed method were examined using the rail and sleeper information models based on an extended IFC data schema for the railway infrastructures.

Development of Nine-node Co-rotational Planar Element for Elastoplastic/Contact Analysis (탄소성/접촉 해석을 위한 Co-rotational 정식화 기반의 9절점 평면 요소 개발)

  • Cho, Hae-Seong;Joo, Hyun-Shig;Shin, Sang Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • This paper presents development of the nine-node co-rotational(CR) planar element applicable for elastoplastic and contact analysis. The CR formulation is one of the efficient geometrically nonlinear formulations. It is based on the assumptions of small strain and large displacement. Further, it is extended to both elastoplastic analysis and contact analysis in this paper. For accurate plastic analysis, nine-node quadrilateral element, which can provide accurate stress prediction, is chosen. Bi-linear hardening rule based on Newton- Raphson return-mapping is employed. Also, Lagrange multiplier is used in order for constraints regarding the contact analysis. The present development is validated via the time transient problems. The present results are compared with those obtained by the other existing software.

Single Level Adaptive hp-Refinement using Integrals of Legendre Shape Function (적분형 르장드르 형상함수를 이용한 단일 수준 적응적 hp-체눈 세분화)

  • Jo, Jun-Hyung;Yoo, Hyo-Jin;Woo, Kwang-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.3
    • /
    • pp.331-340
    • /
    • 2010
  • The basic theory and application of new adaptive finite element algorithm have been proposed in this study including the adaptive hp-refinement strategy, and the effective method for constructing hp-approximation. The hp-adaptive finite element concept needs the integrals of Legendre shape function, nonuniform p-distribution, and suitable constraint of continuity in conjunction with irregular node connection. The continuity of hp-adaptive mesh is an important problem at the common boundary of element interface. To solve this problem, the constraint of continuity has been enforced at the common boundary using the connectivity mapping matrix. The effective method for constructing of the proposed algorithm has been developed by using hierarchical nature of the integrals of Legendre shape function. To verify the proposed algorithm, the problem of simple cantilever beam has been solved by the conventional h-refinement and p-refinement as well as the proposed hp-refinement. The result obtained by hp-refinement approach shows more rapid convergence rate than those by h-refinement and p-refinement schemes. It it noted that the proposed algorithm may be implemented efficiently in practice.

Super Resolution using Dictionary Data Mapping Method based on Loss Area Analysis (손실 영역 분석 기반의 학습데이터 매핑 기법을 이용한 초해상도 연구)

  • Han, Hyun-Ho;Lee, Sang-Hun
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.3
    • /
    • pp.19-26
    • /
    • 2020
  • In this paper, we propose a method to analyze the loss region of the dictionary-based super resolution result learned for image quality improvement and to map the learning data according to the analyzed loss region. In the conventional learned dictionary-based method, a result different from the feature configuration of the input image may be generated according to the learning image, and an unintended artifact may occur. The proposed method estimate loss information of low resolution images by analyzing the reconstructed contents to reduce inconsistent feature composition and unintended artifacts in the example-based super resolution process. By mapping the training data according to the final interpolation feature map, which improves the noise and pixel imbalance of the estimated loss information using a Gaussian-based kernel, it generates super resolution with improved noise, artifacts, and staircase compared to the existing super resolution. For the evaluation, the results of the existing super resolution generation algorithms and the proposed method are compared with the high-definition image, which is 4% better in the PSNR (Peak Signal to Noise Ratio) and 3% in the SSIM (Structural SIMilarity Index).

Multi-scale Process-structural Analysis Considering the Stochastic Distribution of Material Properties in the Microstructure (미소 구조 물성의 확률적 분포를 고려한 하이브리드 성형 공정 연계 멀티스케일 구조 해석)

  • Jang, Kyung Suk;Kim, Tae Ri;Kim, Jeong Hwan;Yun, Gun Jin
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.188-195
    • /
    • 2022
  • This paper proposes a multiscale process-structural analysis methodology and applies to a battery housing part made of the short fiber-reinforced and fabric-reinforced composite layers. In particular, uncertainties of the material properties within the microscale representative volume element (RVE) were considered. The random spatial distribution of matrix properties in the microscale RVE was realized by the Karhunen-Loeve Expansion (KLE) method. Then, effective properties of the RVE reflecting on spatially varying matrix properties were obtained by the computational homogenization and mapped to a macroscale FE (finite element) model. Morever, through the hybrid process simulation, a FE (finite element) model mapping residual stress and fiber orientation from compression molding simulation is combined with one mapping fiber orientation from the draping process simulation. The proposed method is expected to rigorously evaluate the design requirements of the battery housing part and composite materials having various material configurations.