DOI QR코드

DOI QR Code

Development of Nine-node Co-rotational Planar Element for Elastoplastic/Contact Analysis

탄소성/접촉 해석을 위한 Co-rotational 정식화 기반의 9절점 평면 요소 개발

  • Cho, Hae-Seong (Department of Aerospace and Mechanical Engineering, Seoul National University) ;
  • Joo, Hyun-Shig (Department of Aerospace and Mechanical Engineering, Seoul National University) ;
  • Shin, Sang Joon (Department of Aerospace and Mechanical Engineering, Seoul National University)
  • 조해성 (서울대학교 기계항공공학부) ;
  • 주현식 (서울대학교 기계항공공학부) ;
  • 신상준 (서울대학교 기계항공공학부)
  • Received : 2016.09.19
  • Accepted : 2016.12.19
  • Published : 2017.02.28

Abstract

This paper presents development of the nine-node co-rotational(CR) planar element applicable for elastoplastic and contact analysis. The CR formulation is one of the efficient geometrically nonlinear formulations. It is based on the assumptions of small strain and large displacement. Further, it is extended to both elastoplastic analysis and contact analysis in this paper. For accurate plastic analysis, nine-node quadrilateral element, which can provide accurate stress prediction, is chosen. Bi-linear hardening rule based on Newton- Raphson return-mapping is employed. Also, Lagrange multiplier is used in order for constraints regarding the contact analysis. The present development is validated via the time transient problems. The present results are compared with those obtained by the other existing software.

본 논문에서는 비교적 최근 정립된 co-rotational 이론을 기반으로 한 4절점 평면요소 정식화를 확장하여 9절점 평면 요소에 적합한 CR 정식화를 제시하고자 한다. 그리고 등방성 재료의 소성 해석을 위해, 선형 경과 규칙(bi-linear hardening rule)을 바탕으로 하는 Newton-Raphson return-mapping 알고리즘을 적용하였다. 이때, von Mises 기준을 적용하여 소성 변형 상태를 예측하였다. Lagrange 승수를 도입하여 2차원 접촉에 대한 구속조건을 부여하였다. 개발한 요소는 상용프로그램인 ABAQUS 해석결과와 비교 검증하였다.

Keywords

References

  1. Bathe, K-J., Ramm, E., Wilson, E.L. (1975) Finite Element Formulations for Large Deformation Dynamic Analysis, Int. J. Nummer. Meth. Eng., 9, pp.353-386. https://doi.org/10.1002/nme.1620090207
  2. Bathe, K-J. (1996) Finite Element Procedures, Englewood Cliffs, Nwe Jersey: Trentice Hall, Inc.
  3. Battini, J-M. (2008) A Non-linear Corotational 4-node Plane Element, Mech. Res. Communications, 35, pp.408-413. https://doi.org/10.1016/j.mechrescom.2008.03.002
  4. Cho, H., Shin, S.J. (2015) Triangular Planar Element Based on Co-rotational Framework, J. Comput. Struct. Eng. Inst. Korea, 28, pp.485-491. https://doi.org/10.7734/COSEIK.2015.28.5.485
  5. Cho, H., Kwak, J.Y., Shin, S.J., Lee, N., Lee, S. (2016) Flapping Wing Fluid-Structureal Interaction Analysis using Co-rotatioonal Triangular Planar Structural Element, AIAA J., 54, pp.2265-2276. https://doi.org/10.2514/1.J054567
  6. Crisfield, M.A. (1997) Non-linear Finite Element Analysis of Solid and Structures, Advanced Topics, 2, Wiley, London.
  7. Rankin, C.C., Nour-Omid, B. (1986) An Element Independent Co-rotational Procedure for the Treatment of Large Rotations, ASME J. Pressure Vessel Tech., 108, pp.165-174. https://doi.org/10.1115/1.3264765
  8. Simo, J., Armero, F. (1993) Improved Version of Assumed Enhanced Strain Tri-linear Element for 3d Finite Deformation Problems, Comput. Meth. Appl. Mech. Eng., 110, pp.359-386. https://doi.org/10.1016/0045-7825(93)90215-J
  9. Neto, E.A.S., Peric, D., Owen, D.R.J. (2008) Computational Methods for Plasticity, John Wiley & Sons, Ltd, Publication., United Kingdom.
  10. Zienkiewicz, O., Taylor, R., Zhu, J. (2005) The Finite Element Mehod: Solid Mechanics, Amsterdam, Elsevier.