• Title/Summary/Keyword: Structural test facility

Search Result 100, Processing Time 0.023 seconds

Feasibility of UHPC shields in spent fuel vertical concrete cask to resist accidental drop impact

  • P.C. Jia;H. Wu;L.L. Ma;Q. Peng
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4146-4158
    • /
    • 2022
  • Ultra-high performance concrete (UHPC) has been widely utilized in military and civil protective structures to resist intensive loadings attributed to its excellent properties, e.g., high tensile/compressive strength, high dynamic toughness and impact resistance. At present, aiming to improve the defects of the traditional vertical concrete cask (VCC), i.e., the external storage facility of spent fuel, with normal strength concrete (NSC) shield, e.g., heavy weight and difficult to fabricate/transform, the feasibility of UHPC applied in the shield of VCC is numerically examined considering its high radiation and corrosion resistance. Firstly, the finite element (FE) analyses approach and material model parameters of NSC and UHPC are verified based on the 1/3 scaled VCC tip-over test and drop hammer test on UHPC members, respectively. Then, the refined FE model of prototypical VCC is established and utilized to examine its dynamic behaviors and damage distribution in accidental tip-over and end-drop events, in which the various influential factors, e.g., UHPC shield thickness, concrete ground thickness, and sealing methods of steel container are considered. In conclusion, by quantitatively evaluating the safety of VCC in terms of the shield damage and vibrations, it is found that adopting the 300 mm-thick UHPC shield instead of the conventional 650 mm-thick NSC shield can reduce about 1/3 of the total weight of VCC, i.e., about 50 t, and 37% floor space, as well as guarantee the structural integrity of VCC during the accidental drop simultaneously. Besides, based on the parametric analyses, the thickness of concrete ground in the VCC storage site is recommended as less than 500 mm, and the welded connection is recommended for the sealing method of steel containers.

Structural Safety Test and Analysis of Type IP-2 Transport Packages with Bolted Lid Type and Thick Steel Plate for Radioactive Waste Drums in a NPP (원자력발전소의 방사성폐기물 드럼 운반을 위한 볼트체결방식의 두꺼운 철판을 이용한 IP-2형 운반용기의 구조 안전성 해석 및 시험)

  • Lee, Sang-Jin;Kim, Dong-hak;Lee, Kyung-Ho;Kim, Jeong-Mook;Seo, Ki-Seog
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.3
    • /
    • pp.199-212
    • /
    • 2007
  • If a type IP-2 transport package were to be subjected to a free drop test and a penetration test under the normal conditions of transport, it should prevent a loss or dispersal of the radioactive contents and a more than 20% increase in the maximum radiation level at any external surface of the package. In this paper, we suggested the analytic method to evaluate the structural safety of a type IP-2 transport package using a thick steel plate for a structure part and a bolt for tying a bolt. Using an analysis a loss or dispersal of the radioactive contents and a loss of shielding integrity were confirmed for two kinds of type IP-2 transport packages to transport radioactive waste drums from a waste facility to a temporary storage site in a nuclear power plant. Under the free drop condition the maximum average stress at the bolts and the maximum opening displacement of a lid were compared with the tensile stress of a bolt and the steps in a lid, which were made to avoid a streaming radiation in the shielding path, to evaluate a loss or dispersal of radioactive waste contents. Also a loss of shielding integrity was evaluated using the maximum decrease in a shielding thickness. To verify the impact dynamic analysis for free drop test condition and evaluate experimentally the safety of two kinds of type IP-2 transport packages, free drop tests were conducted with various drop directions. For the tests we examined the failure of bolts and the deformation of flange to evaluate a loss or dispersal of radioactive material and measured the shielding thickness using a ultrasonic thickness gauge to assess a loss of shielding integrity. The strains and accelerations acquired from tests were compared with those by analyses to verify the impact dynamic analysis. The analytic results were larger than the those of test so that the analysis showed the conservative results. Finally, we evaluated the safety of the type IP-2 transport package under the stacking test condition using a finite element analysis. Under the stacking test condition, the maximum Tresca stress of the shielding material was 1/3 of the yielding stress. Two kinds of a type IP-2 transport package were safe for the free drop test condition and the stacking test condition.

  • PDF

Shape-Estimation of Human Hand Using Polymer Flex Sensor and Study of Its Application to Control Robot Arm (폴리머 굽힘센서를 이용한 손의 형상 추정과 로봇 팔 제어 연구)

  • Lee, Jin-Hyuk;Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.1
    • /
    • pp.68-72
    • /
    • 2015
  • Ultrasonic inspection robot systems have been widely researched and developed for the real-time monitoring of structures such as power plants. However, an inspection robot that is operated in a simple pattern has limitations in its application to various structures in a plant facility because of the diverse and complicated shapes of the inspection objects. Therefore, accurate control of the robot is required to inspect complicated objects with high-precision results. This paper presents the idea that the shape and movement information of an ultrasonic inspector's hand could be profitably utilized for the accurate control of robot. In this study, a polymer flex sensor was applied to monitor the shape of a human hand. This application was designed to intuitively control an ultrasonic inspection robot. The movement and shape of the hand were estimated by applying multiple sensors. Moreover, it was successfully shown that a test robot could be intuitively controlled based on the shape of a human hand estimated using polymer flex sensors.

Development of the Low Pressure Piping System for the Liquid Rocket LOX Feed System (액체로켓 LOX 공급계의 저압 배관시스템 개발)

  • Jun, Sang-In;Jung, Jin-Taeg;Kim, Woo-Kyum;Park, Joon-Seong;Kwon, Oh-Sung;Kim, Young-Mog
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.322-325
    • /
    • 2007
  • This paper shows the development procedure of the low pressure LOX feed system which is used in the liquid rocket with a turbopump. Korean Air has cooperated with KARI in developing the LOX feed system to turbopump. The LOX feed system is characterized with cryogenic temperature and the thin-thickness tube for weight saving. The system in this project is composed with a main feed line and a recirculation line for the LOX temperature conditioning. Each piping system has many components, namely, bellows, filter, orifice, valves, flange and support. In this paper, system design & manufacturing, structural & thermal analyses, and component tests are explained. Finally, the system was assembled to the KARI's PTF test facility and functioned well to meet its required performance.

  • PDF

Safety evaluation of type B transport container for tritium storage vessel (B형 삼중수소 운반용기 안정성 평가)

  • Lee, Min-Soo;Paek, Seung-Woo;Kim, Kwang-Rag;Ahn, Do-Hee;Yim, Sung-Paal;Chung, Hong-Suk;Choi, Heui-Joo;Choi, Jeong-Won;Son, Soon-Hwan;Song, Kyu-Min
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.2
    • /
    • pp.155-169
    • /
    • 2007
  • A transport container for a 500 kCi tritium storage vessel was developed, which could be used for the transport of metal tritide from Wolsong TRF facility to a disposal site. The structural, thermal, shielding, and confinement analyses were performed for the container in a view of Type B. As a result of structural analysis, the developed container sustained its integrity under normal and accidental conditions. The maximum temperature increase of the inner storage vessel by radiation was evaluated at $134.8^{\circ}C at room temperature. In $800^{\circ}C$ fire test, The thermal barrier of container sustained the inner vessel at $405^{\circ}C after 30 min, which temperature was allowable for the container integrity since maximum design temperature of inner vessel was $550^{\circ}C. In the evaluation of the shielding, the activity of radiation was nearly zero on the outer surface of inner vessel. Consequently the transport container for a 500 kCi tritium was evaluated to pass all the safety tests including accidental condition, so it was concluded that the designed transport container is proper to be used.

  • PDF

Estimation on Filling Performance of Thixotropic Grout for Increasing Front-Water Depth of Gravity-Type Quay Wall (중력식 안벽 구조물의 증심 시공을 위한 가소성 그라우트의 충진성능 평가)

  • Jang, Kyong-Pil;Ryu, Yong-Sun;Kwon, Seung-Hee;Han, Woon-Woo;Oh, Myong-Hak
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.169-177
    • /
    • 2017
  • Recently, as the size of transportation vessels has increased, there is a growing need for securing the front-water depths of existing port facilities. The method of deepening front-water depth is securing the depth of the port facility, and it is reinforced by grouting after excavating the rubble-mound to the required depth. The purpose of this study is to investigate the reinforcing performance and filling performance of thixotropic grout as a grouting material for reinforcing rubble-mound. Compressive strength tests were carried out for two types of thixotropic grout, and 5 specimens with a diameter of 400 mm and a height of 530 mm were manufactured and evaluated for filling performance. The required strength of reinforced rubble-mound required to ensure the safety of the structure is 6 MPa. All the thixotropic grouts used in this study were found to satisfy the required strength over 9 MPa at 7 days of age. As a result of visual observation of filling state of the filling performance test specimens, it was confirmed that the thixotropic grout was well filled up to the desired fillet height.

Evaluation of the Pull-out Resistance of the SMA Wire Connector (SMA 와이어를 이용한 연결재의 인발저항성능 평가)

  • Jung, Chi-Young;Woo, Tae-Ryeon;Lee, Jong-Han;Cheung, Jin-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.130-137
    • /
    • 2019
  • Precast concrete (PC) structure is one of the type of the structures which is made in a facility prior to installing it to a construction field. The contact surfaces between two PC structures should be treated for obtaining enough binding force by inducing prestressing force. However, in the many cases, the contact surface causes the crack and leakage of water. These cracks and water leakage can cause the corrosion of the rebar, and the corrosion of the rebar can severely reduce the long-term durability. In this study, the SMA wire connector is suggested to solve the problem with the contact surfaces between two PC structures. The pull-out resistance of the suggested SMA wire connector is evaluated by conducting the tests to find the effect of the number of wires, shape of connector part, and shape memory effect. As a result of this study, the empirical formula is suggested to estimate the pull-out resistance related with the effects of the shape of the connector, shape memory effect, and the adhesive force. The validity between the estimated pull-out resistance and the measured value is confirmed.

Evaluation of Freeze-Thaw Damage on Concrete Using Nonlinear Ultrasound (초음파의 비선형 특성을 이용한 콘크리트 동결융해 손상 평가)

  • Choi, Ha-Jin;Kim, Ryul-Ri;Lee, Jong-Suk;Min, Ji-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.56-64
    • /
    • 2021
  • Leakage due to deterioration and damage is one of the major causes of volume change by freezing and thawing, and it leads micro-cracking and surface scaling in concrete structures. The deterioration of damaged concrete accelerates with the chloride attack. Thus, in the detailed guidelines for facility performance evaluation (2020), the quality of cover concrete and the freeze-thaw (FT) repetition cycle were newly suggested for concrete durability assessment. The quality of cover concrete should be evaluated by the rebound hammer test and the FT repetition cycle should be also considered in the deterioration environmental assessment. This study suggested the application of fast dynamic based nonlinear ultrasound method to monitor initial micro-scale damage under freezing and thawing environment. Concrete specimens were fabricated with different water-cement ratios (40%, 60%) and air contents (1.5% and 3.0%). The compressive strength, rebound number, relative dynamic modulus, and nonlinear ultrasound were measured with different FT cycles. The scanning electron microscopy was also performed to investigate the micro-scale FT damage. As a result, both the rebound number and the relative dynamic modulus had difficulty to detect early damage but the proposed method showed a potential to detect initial micro-scale damage and predict the FT resistance performance of concrete.

Performance Evaluation of System Support Assembled with Reused Members (재사용 가설기자재로 조립된 시스템 동바리의 성능 평가)

  • Park, Jun-Beom;Jung, Wook;Bae, Sung-Jae;Kim, Chan-Jin;Yoon, Sung-Hyun;Yoon, Sang-Moon;Kim, Young-Suk;Kim, Jung-Yeol
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.5
    • /
    • pp.15-24
    • /
    • 2024
  • System support is a facility that is temporarily installed to support vertical loads at construction sites, and is assembled and installed by reused individual members. These characteristics are likely to lead to poor performance of installed system supports, and even though it is institutionalized to check structural safety at the their design phase, accidents continue to occur at the construction site. Accordingly, safety management of system support is implemented through various institutional methods, but the current system does not consider the performance degradation of temporary facilities due to the reuse of individual temporary members. Therefore, the purpose of this study is to verify the performance of assembled system support. In order to do achieve this purpose, the authors divided individual system supports into unused and used groups and performed compression performance test with defined models assembled with those two groups of system supports. The results of this study are expected to be meaningful as a research case that can quantitatively evaluate safety systems and standards for the performance of existing temporary facilities and suggest directions for improving the safety management system of temporary facilities in the future.

Evaluation of Ballistic Resistance Performance by Thickness and Proportion of Magnetic Aggregate of Concrete (콘크리트 두께와 자철광 함량에 따른 방탄 성능 평가)

  • Lim, Cha-Yeon;Kim, Kuk-Joo;Roh, Jeong-Heon;Jang, Chang-Su;Park, Young-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.1
    • /
    • pp.43-51
    • /
    • 2020
  • The main purpose of protective facility for small military unit is to provide the protection of not all the weapons system but the near-miss bullet in Korean army. In particular about the small caliber bullets, especially KM80 in Korea, there were many studies that both of the experiential and structural design methods dose not reflect enough the military threat. For that reason, a new equation to calculate effective anti-piercing depths for RC slabs against small caliber bullets is proposed in earlier research with actual shooting test. But, the test only considers the strength of concrete without the thickness of concrete, types of aggregate, the angle of yaw of bullet, high-strength concrete, etc. Therefore, this study evaluated the ballistic resistance performance by thickness and proportion of magnetic aggregate of concrete. As a result, we identified two major statistical estimations that the error of piercing depth by the angle of yaw of bullet could be cancelled by barrage and the thickness and proportion of magnetic aggregate of concrete dose not effect on the protection ability of concrete structure.