• Title/Summary/Keyword: Structural similarity index

Search Result 87, Processing Time 0.022 seconds

Deep Learning-Based Low-Light Imaging Considering Image Signal Processing

  • Minsu, Kwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.2
    • /
    • pp.19-25
    • /
    • 2023
  • In this paper, we propose a method for improving raw images captured in a low light condition based on deep learning considering the image signal processing. In the case of a smart phone camera, compared to a DSLR camera, the size of a lens or sensor is limited, so the noise increases and the reduces the quality of images in low light conditions. Existing deep learning-based low-light image processing methods create unnatural images in some cases since they do not consider the lens shading effect and white balance, which are major factors in the image signal processing. In this paper, pixel distances from the image center and channel average values are used to consider the lens shading effect and white balance with a deep learning model. Experiments with low-light images taken with a smart phone demonstrate that the proposed method achieves a higher peak signal to noise ratio and structural similarity index measure than the existing method by creating high-quality low-light images.

Speckle Noise Reduction and Image Quality Improvement in U-net-based Phase Holograms in BL-ASM (BL-ASM에서 U-net 기반 위상 홀로그램의 스펙클 노이즈 감소와 이미지 품질 향상)

  • Oh-Seung Nam;Ki-Chul Kwon;Jong-Rae Jeong;Kwon-Yeon Lee;Nam Kim
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.5
    • /
    • pp.192-201
    • /
    • 2023
  • The band-limited angular spectrum method (BL-ASM) causes aliasing errors due to spatial frequency control problems. In this paper, a sampling interval adjustment technique for phase holograms and a technique for reducing speckle noise and improving image quality using a deep-learningbased U-net model are proposed. With the proposed technique, speckle noise is reduced by first calculating the sampling factor and controlling the spatial frequency by adjusting the sampling interval so that aliasing errors can be removed in a wide range of propagation. The next step is to improve the quality of the reconstructed image by learning the phase hologram to which the deep learning model is applied. In the S/W simulation of various sample images, it was confirmed that the peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) were improved by 5% and 0.14% on average, compared with the existing BL-ASM.

Original Identifier Code for Patient Information Security

  • Ahmed Nagm;Mohammed Safy
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.141-148
    • /
    • 2023
  • During the medical data transmissions, the protection of the patient information is vital. Hence this work proposes a spatial domain watermarking algorithm that enhances the data payload (capacity) while maintaining the authentication and data hiding. The code is distributed at every pixel of the digital image and not only in the regions of non-interest pixels. But the image details are still preserved. The performance of the proposed algorithm is evaluated using several performance measures such as the mean square error (MSE), the mean absolute error (MAE), and the peak signal to noise Ratio (PSNR), the universal image quality index (UIQI) and the structural similarity index (SSIM).

Comparison of CNN and GAN-based Deep Learning Models for Ground Roll Suppression (그라운드-롤 제거를 위한 CNN과 GAN 기반 딥러닝 모델 비교 분석)

  • Sangin Cho;Sukjoon Pyun
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.2
    • /
    • pp.37-51
    • /
    • 2023
  • The ground roll is the most common coherent noise in land seismic data and has an amplitude much larger than the reflection event we usually want to obtain. Therefore, ground roll suppression is a crucial step in seismic data processing. Several techniques, such as f-k filtering and curvelet transform, have been developed to suppress the ground roll. However, the existing methods still require improvements in suppression performance and efficiency. Various studies on the suppression of ground roll in seismic data have recently been conducted using deep learning methods developed for image processing. In this paper, we introduce three models (DnCNN (De-noiseCNN), pix2pix, and CycleGAN), based on convolutional neural network (CNN) or conditional generative adversarial network (cGAN), for ground roll suppression and explain them in detail through numerical examples. Common shot gathers from the same field were divided into training and test datasets to compare the algorithms. We trained the models using the training data and evaluated their performances using the test data. When training these models with field data, ground roll removed data are required; therefore, the ground roll is suppressed by f-k filtering and used as the ground-truth data. To evaluate the performance of the deep learning models and compare the training results, we utilized quantitative indicators such as the correlation coefficient and structural similarity index measure (SSIM) based on the similarity to the ground-truth data. The DnCNN model exhibited the best performance, and we confirmed that other models could also be applied to suppress the ground roll.

Image compression using K-mean clustering algorithm

  • Munshi, Amani;Alshehri, Asma;Alharbi, Bayan;AlGhamdi, Eman;Banajjar, Esraa;Albogami, Meznah;Alshanbari, Hanan S.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.275-280
    • /
    • 2021
  • With the development of communication networks, the processes of exchanging and transmitting information rapidly developed. As millions of images are sent via social media every day, also wireless sensor networks are now used in all applications to capture images such as those used in traffic lights, roads and malls. Therefore, there is a need to reduce the size of these images while maintaining an acceptable degree of quality. In this paper, we use Python software to apply K-mean Clustering algorithm to compress RGB images. The PSNR, MSE, and SSIM are utilized to measure the image quality after image compression. The results of compression reduced the image size to nearly half the size of the original images using k = 64. In the SSIM measure, the higher the K, the greater the similarity between the two images which is a good indicator to a significant reduction in image size. Our proposed compression technique powered by the K-Mean clustering algorithm is useful for compressing images and reducing the size of images.

Structural similarity based efficient keyframes extraction from multi-view videos (구조적인 유사성에 기반한 다중 뷰 비디오의 효율적인 키프레임 추출)

  • Hussain, Tanveer;Khan, Salman;Muhammad, Khan;Lee, Mi Young;Baik, Sung Wook
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.14 no.6
    • /
    • pp.7-14
    • /
    • 2018
  • Salient information extraction from multi-view videos is a very challenging area because of inter-view, intra-view correlations, and computational complexity. There are several techniques developed for keyframes extraction from multi-view videos with very high computational complexities. In this paper, we present a keyframes extraction approach from multi-view videos using entropy and complexity information present inside frame. In first step, we extract representative shots of the whole video from each view based on structural similarity index measurement (SSIM) difference value between frames. In second step, entropy and complexity scores for all frames of shots in different views are computed. Finally, the frames with highest entropy and complexity scores are considered as keyframes. The proposed system is subjectively evaluated on available office benchmark dataset and the results are convenient in terms of accuracy and time complexity.

ISFRNet: A Deep Three-stage Identity and Structure Feature Refinement Network for Facial Image Inpainting

  • Yan Wang;Jitae Shin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.881-895
    • /
    • 2023
  • Modern image inpainting techniques based on deep learning have achieved remarkable performance, and more and more people are working on repairing more complex and larger missing areas, although this is still challenging, especially for facial image inpainting. For a face image with a huge missing area, there are very few valid pixels available; however, people have an ability to imagine the complete picture in their mind according to their subjective will. It is important to simulate this capability while maintaining the identity features of the face as much as possible. To achieve this goal, we propose a three-stage network model, which we refer to as the identity and structure feature refinement network (ISFRNet). ISFRNet is based on 1) a pre-trained pSp-styleGAN model that generates an extremely realistic face image with rich structural features; 2) a shallow structured network with a small receptive field; and 3) a modified U-net with two encoders and a decoder, which has a large receptive field. We choose structural similarity index (SSIM), peak signal-to-noise ratio (PSNR), L1 Loss and learned perceptual image patch similarity (LPIPS) to evaluate our model. When the missing region is 20%-40%, the above four metric scores of our model are 28.12, 0.942, 0.015 and 0.090, respectively. When the lost area is between 40% and 60%, the metric scores are 23.31, 0.840, 0.053 and 0.177, respectively. Our inpainting network not only guarantees excellent face identity feature recovery but also exhibits state-of-the-art performance compared to other multi-stage refinement models.

Evaluation Model for Gab Analysis Between NCS Competence Unit Element and Traditional Curriculum (NCS 능력단위 요소와 기존 교육과정 간 갭 분석을 위한 평가모델)

  • Kim, Dae-kyung;Kim, Chang-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.4
    • /
    • pp.338-344
    • /
    • 2015
  • The national competency standards (NCS) is a systematize and standardize for skills required to perform their job. The NCS has developed a learning module with materialization and standardize by competence unit element, which is the unit of specific job competency. The existing curriculum is material to gab analysis for use in education training with competence unit element. The existing gab analysis has evaluated subjectively by experts. The gab analysis by experts bring up a subject subjective decision, accuracy lack, temporal and spatial inefficiency by psychological factor. This paper is proposed automated evaluation model for problem resolve of subjective evaluation. This paper use index term extraction, term frequency-inverse document frequency for feature value extraction, cosine similarity algorithm for gab analysis between existing curriculum and competence unit element. This paper was presented similarity mapping table between existing curriculum and competence unit element. The evaluation model in this paper should be complemented by an improved algorithm from the structural characteristics and speed.

COSMO-SkyMed 2 Image Color Mapping Using Random Forest Regression

  • Seo, Dae Kyo;Kim, Yong Hyun;Eo, Yang Dam;Park, Wan Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.4
    • /
    • pp.319-326
    • /
    • 2017
  • SAR (Synthetic aperture radar) images are less affected by the weather compared to optical images and can be obtained at any time of the day. Therefore, SAR images are being actively utilized for military applications and natural disasters. However, because SAR data are in grayscale, it is difficult to perform visual analysis and to decipher details. In this study, we propose a color mapping method using RF (random forest) regression for enhancing the visual decipherability of SAR images. COSMO-SkyMed 2 and WorldView-3 images were obtained for the same area and RF regression was used to establish color configurations for performing color mapping. The results were compared with image fusion, a traditional color mapping method. The UIQI (universal image quality index), the SSIM (structural similarity) index, and CC (correlation coefficients) were used to evaluate the image quality. The color-mapped image based on the RF regression had a significantly higher quality than the images derived from the other methods. From the experimental result, the use of color mapping based on the RF regression for SAR images was confirmed.

Analysis of the Globular Nature of Proteins

  • Jung, Sung-Hoon;Son, Hyeon-Seok
    • Genomics & Informatics
    • /
    • v.9 no.2
    • /
    • pp.74-78
    • /
    • 2011
  • Numerous restraints and simplifications have been developed for methods that anticipate protein structure to reduce the colossal magnitude of possible conformational states. In this study, we investigated if globularity is a general characteristic of proteins and whether they can be applied as a valid constraint in protein structure simulations with approximated measurements (Gb-index). Unexpectedly, most of the proteins showed strong structural globularity (i.e., mode of approximately 76% similarity to the perfect globe) with only a few percent of proteins being outliers. Small proteins tended to be significantly non-globular ($R^2$=0.79) and the minimum Gb-index showed a logarithmic increase with the increase in protein size ($R^2$=0.62), strongly implying that the non-globular characteristics might be more acceptable for smaller proteins than larger ones. The strong perfect globe-like character and the relationship between small size and the loss of globular structure of a protein may imply that living organisms have mechanisms to aid folding into the globular structure to reduce irreversible aggregation. This also implies the possible mechanisms of diseases caused by protein aggregation, including some forms of trinucleotide repeat expansion-mediated diseases.