• Title/Summary/Keyword: Structural safety test

Search Result 941, Processing Time 0.023 seconds

Evaluation of the Load Carrying Capacity on a Rahmen Bridge with Ultra-high Strength Centrifugally Formed Square Beams as the Superstructure (초고강도 원심성형 각형보를 상부구조로 하는 라멘교의 내하성능 평가 )

  • Doo-Sung Lee;Sung-Jin Kim;Jeong-Hoi Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.61-69
    • /
    • 2024
  • An ultra-high strength prestressed prismatic beam of 100 MPa in compressive strength was developed by increasing the water-tightness of concrete by utilizing centrifugal molding processes without adding expensive admixtures. The centrifugal prismatic PSC beam developed as the superstructure of the avalanche tunnel was constructed on a rahmen bridge in a small local river. In this study, the centrifugal prismatic beam was compared and analyzed based on the results of measurements made through static load tests and the results of numerical analysis of the target structure. The common load-carrying capacity and safety of the rahmen bridge were evaluated. The static·dynamic load tests and finite element analysis results of this bridge were similar, and it was confirmed that the behavior of the centrifugal prismatic beam was well simulated. All centrifugally formed square beams that make up the composite rahmen bridge were evaluated to secure sufficient load carrying capacity under the design live load, and structural reliability was proven by ensuring safety.

Analysis of Scaling Factor applied to Lab-Scale Model for Estimating Dynamic Characteristics of Real Structures (실구조물의 동특성 파악을 위한 축소모형에 적용되는 상사비 분석)

  • Park, Gun;Yoon, Hyungchul;Kim, Sung Bo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.59-66
    • /
    • 2021
  • The earthquakes are the natural disasters that can cause the most serious damage to civil structures. Therefore, various studies are being conducted to secure the safety of structures against earthquakes. Most studies on the safety or mechanism of civil structures during earthquakes are being conducted based on lab scale test, because real structure tests are impossible when considering the scale of civil structures. The scaling factor proposed by Iai is mainly cited, but when applying the scaling factor proposed by Iai, there are many difficulties in selecting the structural members necessary for the production of the lab scale model. This is because when applying the scaling factor proposed by Iai, the scaling factor must be applied to the elastic modulus, which is the material property of the structure. Therefore, a new method based on Iai's 's similarity law for determining scale factor is applied in this study where the material property of real structure is same as that of lab-scale model. Through the results of this study, it is considered that the characteristics of the structure calculated through the lab scale model test can more accurately reflect the characteristics of the real structure.

System identification of a cable-stayed bridge using vibration responses measured by a wireless sensor network

  • Kim, Jeong-Tae;Ho, Duc-Duy;Nguyen, Khac-Duy;Hong, Dong-Soo;Shin, Sung Woo;Yun, Chung-Bang;Shinozuka, Masanobu
    • Smart Structures and Systems
    • /
    • v.11 no.5
    • /
    • pp.533-553
    • /
    • 2013
  • In this paper, system identification of a cable-stayed bridge in Korea, the Hwamyung Bridge, is performed using vibration responses measured by a wireless sensor system. First, an acceleration based-wireless sensor system is employed for the structural health monitoring of the bridge, and wireless sensor nodes are deployed on a deck, a pylon and several selected cables. Second, modal parameters of the bridge are obtained both from measured vibration responses and finite element (FE) analysis. Frequency domain decomposition and stochastic subspace identification methods are used to obtain the modal parameters from the measured vibration responses. The FE model of the bridge is established using commercial FE software package. Third, structural properties of the bridge are updated using a modal sensitivity-based method. The updating work improves the accuracy of the FE model so that structural behaviors of the bridge can be represented better using the updated FE model. Finally, cable forces of the selected cables are also identified and compared with both design and lift-off test values.

Effects of No Stiffness Inside Unbonded Tendon Ducts on the Behavior of Prestressed Concrete Containment Vessels

  • Noh, Sang-Hoon;Kwak, Hyo-Gyong;Jung, Raeyoung
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.805-819
    • /
    • 2016
  • The numerical simulation methodologies to evaluate the structural behaviors of prestressed concrete containment vessels (PCCVs) have been substantially developed in recent decades. However, there remain several issues to be investigated more closely to narrow the gap between test results and numerical simulations. As one of those issues, the effects of no stiffness inside unbonded tendon ducts on the behavior of PCCVs are investigated in this study. Duct holes for prestressing cables' passing are provided inside the containment wall and dome in one to three directions for general PCCVs. The specific stress distribution along the periphery of the prestressing duct hole and the loss of stiffness inside the hole, especially in an unbonded tendon system, are usually neglected in the analysis of PCCVs with the assumption that the duct hole is filled with concrete. However, duct holes are not small enough to be neglected. In this study, the effects of no stiffness inside the unbonded tendon system on the behaviors of PCCVs are evaluated using both analytical and numerical approaches. From the results, the effects of no stiffness in unbonded tendons need to be considered in numerical simulations for PCCVs, especially under internal pressure loading.

Experimental investigation of multi-layered laminated glass beams under in-plane bending

  • Huang, Xiaokun;Liu, Qiang;Liu, Gang;Zhou, Zhen;Li, Gang
    • Structural Engineering and Mechanics
    • /
    • v.60 no.5
    • /
    • pp.781-794
    • /
    • 2016
  • Due to its relatively good safety performance and aesthetic benefits, laminated glass (LG) is increasingly being used as load-carrying members in modern buildings. This paper presents an experimental study into one applicational scenario of structural LG subjected to in-plane bending. The aim of the study is to reveal the in-plane behaviors of the LG beams made up of multi-layered glass sheets. The LG specimens respectively consisted of two, three and four plies of glass, bonded together by two prominent adhesives. A total of 26 tests were carried out. From these tests, the structural behaviors in terms of flexural stiffness, load resistance and post-breakage strength were studied in detail, whilst considering the influence of interlayer type, cross-sectional interlayer percentage and presence of shear forces. Based on the test results, analytical suggestions were made, failure modes were identified, corresponding failure mechanisms were discussed, and a rational engineering model was proposed to predict the post-breakage strength of the LG beams. The results obtained are expected to provide useful information for academic and engineering professionals in the analysis and design of LG beams bending in-plane.

Structural Analysis and Dynamic Characteristics Analysis of CNC Automatic Lathe Structure (CNC 복합 자동선반 구조물의 구조해석 및 동특성 분석에 관한 연구)

  • Yang, Dong-Ho;Lee, Sang-Hyeop;Cha, Seung-Hwan;Kwak, Jin;Lee, Jong-Chan;Lee, Young-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.7
    • /
    • pp.21-27
    • /
    • 2022
  • This study was conducted to evaluate the structural stability of a CNC automatic lathe structure and avoid resonance. The analysis conditions were analyzed by applying the weight of the upper assembly. From the structural analysis, the stress and deformation were low, and the safety factor was high. From the dynamic characteristic analysis, it was determined that resonance does not occur because the natural frequency is outside the driving range. The error between the dynamic characteristic analysis and vibration test results is very low; thus, the reliability of the analysis results can be secured.

Dynamic Material Testing of Aged Concrete Cores From the Outer Wall of the High-Flux Advanced Neutron Application Reactor

  • JaeHoon Lim;Byoungsun Park;Jongmin Lim;Yun-Young Yang;Sung-Hyo Lee;Sang Soon Cho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.2
    • /
    • pp.139-144
    • /
    • 2024
  • Concrete structures must maintain their shielding abilities and structural integrity over extended operational periods. Despite the widespread use of dry storage systems for spent nuclear fuel, research on the properties of deteriorated concrete and their impact on structural performance remains limited. To address this significant research gap, static and dynamic material testing was conducted on concrete specimens carefully extracted from the outer wall of the High-flux Advanced Neutron Application ReactOr (HANARO), constructed approximately 30 years ago. Despite its age, the results reveal that the concrete maintains its structural integrity impressively well, with static compression tests indicating an average compressive strength exceeding the original design standards. Further dynamic property testing using advanced high-speed material test equipment supported these findings, showing the consistency of dynamic increase factors with those reported in previous studies. These results highlight the importance of monitoring and assessing concrete structures in nuclear facilities for long-term safety and reliability.

Experimental validations of fire-resistant materials for protecting LPG small storage tank from building fires (건물 화재 시 LPG소형저장탱크 보호용 화재 저항 재료 성능 실증)

  • Kim, Seung-Hwan;Kim, Kyung-Sik;Heo, Seung-Geon;Lee, Jae-Hun
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.4
    • /
    • pp.18-24
    • /
    • 2020
  • The purpose of this study is to validate thermal hinderance effects, i.e., feasibilities, of fire-proof structure for LPG tank exposed to fire from adjacent burning building. The panel materials suggested for the fire-proof structure are (1) 10 mm-thick wood, (2) wood with fireproof coating, (3) 75 mm-thick Expanded Polystyrene, (4) 75 mm-thick glass wool filled sandwich panel, and (5) 75 mm-thick autoclaved lightweight concrete. The square planar fire source of 1 ㎡, a matrix of nozzles releasing 120-140 g/s of LPG, is used to heat up the wall and the tank beyond, mimicking heat transfer from burning exterior wall finishes. The feasibility is tested by inspecting structural integrity after test, and then by examining temperatures at both sides of panels and tank's front surface as well as heat fluxes. As a result, it can be concluded that, among the suggested sample materials, fire-proof wall with ALC panel only showed the feasibility for explosion prevention with the proven evidences of structural integrity and least increase in temperature of tank.

Exploring Supervisor-Related Job Resources as Mediators between Supervisor Conflict and Job Attitudes in Hospital Employees

  • Elfering, Achim;Gerhardt, Christin;Grebner, Simone;Muller, Urs
    • Safety and Health at Work
    • /
    • v.8 no.1
    • /
    • pp.19-28
    • /
    • 2017
  • Background: Conservation of resources theory assumes loss of resources as a cause of job strain. In hospital work, conflicts with supervisors are tested to predict lower resources, that is, supervisory social support, participation possibilities, and appreciation. All three resources are expected to predict, in turn, experienced stress (job strain) and lower job satisfaction, lower affective commitment, and a higher resigned attitude towards the job (job attitudes). Methods: The sample included 1,073 employees from 14 Swiss hospitals (n = 604 nurses, n = 81 physicians, n = 135 medical therapists, and n = 253 technical and administrative staff). Of the total sample, 83.1% were female and 38.9% worked full-time. The median tenure was between 7 years and 10 years. Constructs were assessed by online questionnaires. Structural equation modeling was used to test mediation. Results: Structural equation modeling confirmed the negative association of conflict with supervisors and job resources. Tests of indirect paths to resources as a link between conflicts with supervisors and job attitudes were significant. For nurses, social support, participation and appreciation showed a significant indirect path, while among medical technicians the indirect paths included social support and appreciation, and among physicians only appreciation showed a significant indirect path. In medical therapists no indirect path was significant. Job resources did not mediate the link between conflict with supervisors and stress in any occupational group. Conclusion: Conflicts with supervisors are likely to reduce job resources and in turn to lower job attitudes. Work design in hospitals should, therefore, address interpersonal working conditions and conflict management in leadership development.

Experimental Study on the Capacity of Holed RC Beam Mixed with Waste Tire Particles (폐타이어 유공 철근콘크리트보의 내력에 관한 실험적연구)

  • Son, Ki-Sang;Lee, Won-Gyun
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.4 s.72
    • /
    • pp.54-62
    • /
    • 2005
  • This Study is to find out how RC beam mixed with sawdust acts comparing with normal beam without sawdust mixture, and how they can be applied to the actual structural frame, despite a Int that they are mixed with waste material : saying sawdust. ED3H1, ED3H2, ED5H1, ED5H2, ED3H1UB, ED5H1UB, ED3H2L, ED5H2L and Normal without sawdust mixture are main factor to be tested here in order to apply them to the actual case. D and H means diameter 3cm or 5cm, and holes one and two respectively. And all variables are tested with each two for one variables. Test results are compared using crack diagrams and strain & loads. There are eleven(11)% capacity decrease between ED 3H1 and ED5H1 in rebar, strain. Left and right side crack shapes are much similar in variable ED3H2L having maximum capacity 14.5 tone. ED5H2L having maximum capacity thirteen(13)tone, in case of normal 19.6 tone. Two holes in beam rather on the longitudinal direction than on the forcing direction can be more effective to keep the original capacity of the beam because this case can distribute load more uniformly. There is 33% capacity decreased in case of diameter five(5)cm, compared to diameter three(3)cm. Two holes give thirty nine(39) percent capacity decrease than one of diameter three(3)cm.