References
- Al-Isawi, A.T., Collins, P.E.F., & Cashell, K.A. (2019), Fully Non-Linear Numerical Simulation of a Shaking Table Test of Dynamic Soil-Pile-Structure Interactions in Soft Clay Using ABAQUS, Geo-Congress 2019, American Society of Civil Engineers.
- Benedetti, D., Carydis, P. & Pezzoli, P. (1998), Shaking table tests on 24 simple masonry buildings, Earthquake engineering & structural dynamics, 27(1), 67-90. https://doi.org/10.1002/(SICI)1096-9845(199801)27:1<67::AID-EQE719>3.0.CO;2-K
- Dolce, M., Cardone, D., Ponzo, F.C. & Valente, C. (2005), Shaking table tests on reinforced concrete frames without and with passive control systems, Earthquake engineering & structural dynamics, 34(14), 1687-1717. https://doi.org/10.1002/eqe.501
- Dolce, M., Cardone, D. & Ponzo, F.C. (2007), Shaking-table tests on reinforced concrete frames with different isolation systems, Earthquake Engineering & Structural Dynamics, 36(5), 573-596. https://doi.org/10.1002/eqe.642
- Fan, W. & Yuan, W.C. (2014), Numerical simulation and analytical modeling of pile-supported structures subjected to ship collisions including soil-structure interaction, Ocean engineering, 91, 11-27. https://doi.org/10.1016/j.oceaneng.2014.08.011
- Goktepe, F., Celebi, E. & Omid, A.J. (2019), Numerical and experimental study on scaled soil-structure model for small shaking table tests, Soil Dynamics and Earthquake Engineering, 119, 308-319. https://doi.org/10.1016/j.soildyn.2019.01.016
- Grange, S., Kotronis, P. & Mazars, J. (2009), A macro-element to simulate 3D soil-structure interaction considering plasticity and uplift, International Journal of Solids and Structures, 46(20), 3651-3663. https://doi.org/10.1016/j.ijsolstr.2009.06.015
- Haeri, S.M., Kavand, A., Rahmani, I. & Torabi, H. (2012), Response of a group of piles to liquefaction-induced lateral spreading by large scale shake table testing, Soil Dynamics and Earthquake Engineering, 38, 25-45. https://doi.org/10.1016/j.soildyn.2012.02.002
- Han, J.T., Yoo, M.T., Choi, J.I. & Kim, M.M. (2010), A study on the dynamic py curves in soft clay by 1 g shaking table tests, Journal of the Korean Geotechnical Society, 26(8), 67-75.
- Hallquist, J. O., LS-DYNA Keyword user's Manual, Livermore Software Technology Corporation, Livermore, Calif., Arp., 2000.
- Hokmabadi, A.S., Fatahi, B. & Samali, B. (2014), Assessment of soil-pile-structure interaction influencing seismic response of mid-rise buildings sitting on floating pile foundations, Computers and Geotechnics, 55, 172-186. https://doi.org/10.1016/j.compgeo.2013.08.011
- Iai, S. (1989), Similitude for shaking table tests on soil-structure-fluid model in 1g gravitational field, Soils and Foundations, 29(1), 105-118. https://doi.org/10.3208/sandf1972.29.105
- Ko, S. (2020), Failure Behavior of Non-seismic RC Column with aspect ratio of 4.0, Korea Institute for Structural Maintenance and Inspection, 24(6), 59-66.
- Kagawa, T. (1978), On the similitude in model vibration tests of earth-structures. In Proceedings of the Japan Society of Civil Engineers, Japan Society of Civil Engineers, 1978(275), 69-77.
- Kokusho, T., & Iwatate, T. (1979), Scaled model tests and numerical analyses on nonlinear dynamic response of soft grounss: Proceedings of the Japan Society of Civil Engineers, 1979(285), 57-67.
- Kim, J. & Shin, M. (2011), Centrifuge-Shaking Table Test for Seismic Performance Evaluation of Subway Station, Korea Institute for Structural Maintenance and Inspection, 15(3), 99-105.
- Kim, S., Ahn, K. & Kang, H. (2018), A Study on the Characteristics of Bridge Bearings Behavior by Finite Element Analysis and Model Test, Korea Institute for Structural Maintenance and Inspection, 18(5), 96-106.
- Lee, J., Jung, H., Oh, J., Park, J. & Kim, S. (2014), Dynamic behavior of group piles according to pile cap embedded in sandy ground, Journal of the Korean Geoenvironmental Society, 19(10), 35-41. https://doi.org/10.14481/jkges.2018.19.10.35
- Lee, W. & Yhim, S. (2013), Study on Seismic Performance of RC Column with Super-Flexibility Membrane, Korea Institute for Structural Maintenance and Inspection, 17(5), 1-12.
- Ling, H.I., Mohri, Y., Leshchinsky, D., Burke, C., Matsushima, K. & Liu, H. (2005), Large-scale shaking table tests on modular-block reinforced soil retaining walls, Journal of Geotechnical and Geoenvironmental Engineering, 131(4), 465-476. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:4(465)
- Liu, S., Li, P., Zhang, W. & Lu, Z. (2020), Experimental study and numerical simulation on dynamic soil-structure interaction under earthquake excitations, Soil Dynamics and Earthquake Engineering, 138, 106333. https://doi.org/10.1016/j.soildyn.2020.106333
- Pitilakis, D., Dietz, M., Wood, D.M., Clouteau, D. & Modaressi, A. (2008), Numerical simulation of dynamic soil-structure interaction in shaking table testing, Soil dynamics and earthquake Engineering, 28(6), 453-467. https://doi.org/10.1016/j.soildyn.2007.07.011
- Qaftan, O.S., Toma-Sabbagh, T., Weekes, L. & Augusthus-Nelson, L. (2020), Validation of a finite element modelling approach on soil-foundation-structure interaction of a multi-storey wall-frame structure under dynamic loadings, Soil Dynamics and Earthquake Engineering, 131, 106041. https://doi.org/10.1016/j.soildyn.2020.106041
- Rayhani, M.H. & El Naggar, M.H. (2008), Numerical modeling of seismic response of rigid foundation on soft soil, International Journal of Geomechanics, 8(6), 336-346. https://doi.org/10.1061/(ASCE)1532-3641(2008)8:6(336)
- Shin, E.C., Kang, H.H., Kim, T.J., Chae, Y.S. & Park, J.J. (2011), Experimental Study on Seismic Performance Evaluation of Lake Dike Structures under Earthquake Loading, Journal of Korean Geosynthetics Society, 10(3), 53-62. https://doi.org/10.12814/JKGSS.2011.10.3.053
- Yu, H., Yan, X., Bobet, A., Yuan, Y., Xu, G. & Su, Q. (2018), Multi-point shaking table test of a long tunnel subjected to nonuniform seismic loadings, Bulletin of Earthquake Engineering, 16(2), 1041-1059. https://doi.org/10.1007/s10518-017-0223-6