DOI QR코드

DOI QR Code

Analysis of Scaling Factor applied to Lab-Scale Model for Estimating Dynamic Characteristics of Real Structures

실구조물의 동특성 파악을 위한 축소모형에 적용되는 상사비 분석

  • 박건 (충북대학교 토목공학부) ;
  • 윤형철 (충북대학교 토목공학부) ;
  • 김성보 (충북대학교 토목공학부)
  • Received : 2020.12.13
  • Accepted : 2021.02.26
  • Published : 2021.02.28

Abstract

The earthquakes are the natural disasters that can cause the most serious damage to civil structures. Therefore, various studies are being conducted to secure the safety of structures against earthquakes. Most studies on the safety or mechanism of civil structures during earthquakes are being conducted based on lab scale test, because real structure tests are impossible when considering the scale of civil structures. The scaling factor proposed by Iai is mainly cited, but when applying the scaling factor proposed by Iai, there are many difficulties in selecting the structural members necessary for the production of the lab scale model. This is because when applying the scaling factor proposed by Iai, the scaling factor must be applied to the elastic modulus, which is the material property of the structure. Therefore, a new method based on Iai's 's similarity law for determining scale factor is applied in this study where the material property of real structure is same as that of lab-scale model. Through the results of this study, it is considered that the characteristics of the structure calculated through the lab scale model test can more accurately reflect the characteristics of the real structure.

세계적으로 자연재해의 빈도와 규모가 증가하고 있으며, 이러한 자연재해는 토목구조물에 다양한 손상을 유발할 수 있다. 이 중 가장 심각한 손상을 유발할 수 있는 자연 재해 중 하나가 지진이다. 따라서 지진에 대하여 구조물의 안전성을 확보하기 위해 다양한 연구들이 진행되고있다. 지진시 토목구조물의 안전성이나 메커니즘에 대한 연구는 대부분 축소모형실험을 바탕으로 진행되고 있으며, 이는 토목구조물의 규모를 고려하였을 때 실구조물실험이 불가능하기 때문이다. 이러한 축소모형연구에서는 Iai가 제안한 상사법칙이 주로 인용되고 있으나, Iai가 제안한 상사법칙을 적용할 경우 축소모델 제작에 필요한 구조부재의 선정에 많은 어려움이 따르게 된다. 이는 Iai가 제안한 상사비를 적용할 경우 구조물의 재료특성인 탄성계수에 상사비를 적용하여야 하기 때문이다. 따라서 이논문에서는 실제구조물과 동일한 재료특성을 갖는 축소모형에 적용되는 상사비를 Iai의 상사법칙에 근거하여 적용하고, 유한요소해석을 통하여 축소모형과 실구조의 동특성을 비교·분석하였다. 이 논문에서 적용한 상사법칙에 근거한 축소모형실험을 통해 산정된 구조물의 특성이 실구조물의 특성을 더욱 정확히 반영할 수 있을 것으로 판단된다.

Keywords

References

  1. Al-Isawi, A.T., Collins, P.E.F., & Cashell, K.A. (2019), Fully Non-Linear Numerical Simulation of a Shaking Table Test of Dynamic Soil-Pile-Structure Interactions in Soft Clay Using ABAQUS, Geo-Congress 2019, American Society of Civil Engineers.
  2. Benedetti, D., Carydis, P. & Pezzoli, P. (1998), Shaking table tests on 24 simple masonry buildings, Earthquake engineering & structural dynamics, 27(1), 67-90. https://doi.org/10.1002/(SICI)1096-9845(199801)27:1<67::AID-EQE719>3.0.CO;2-K
  3. Dolce, M., Cardone, D., Ponzo, F.C. & Valente, C. (2005), Shaking table tests on reinforced concrete frames without and with passive control systems, Earthquake engineering & structural dynamics, 34(14), 1687-1717. https://doi.org/10.1002/eqe.501
  4. Dolce, M., Cardone, D. & Ponzo, F.C. (2007), Shaking-table tests on reinforced concrete frames with different isolation systems, Earthquake Engineering & Structural Dynamics, 36(5), 573-596. https://doi.org/10.1002/eqe.642
  5. Fan, W. & Yuan, W.C. (2014), Numerical simulation and analytical modeling of pile-supported structures subjected to ship collisions including soil-structure interaction, Ocean engineering, 91, 11-27. https://doi.org/10.1016/j.oceaneng.2014.08.011
  6. Goktepe, F., Celebi, E. & Omid, A.J. (2019), Numerical and experimental study on scaled soil-structure model for small shaking table tests, Soil Dynamics and Earthquake Engineering, 119, 308-319. https://doi.org/10.1016/j.soildyn.2019.01.016
  7. Grange, S., Kotronis, P. & Mazars, J. (2009), A macro-element to simulate 3D soil-structure interaction considering plasticity and uplift, International Journal of Solids and Structures, 46(20), 3651-3663. https://doi.org/10.1016/j.ijsolstr.2009.06.015
  8. Haeri, S.M., Kavand, A., Rahmani, I. & Torabi, H. (2012), Response of a group of piles to liquefaction-induced lateral spreading by large scale shake table testing, Soil Dynamics and Earthquake Engineering, 38, 25-45. https://doi.org/10.1016/j.soildyn.2012.02.002
  9. Han, J.T., Yoo, M.T., Choi, J.I. & Kim, M.M. (2010), A study on the dynamic py curves in soft clay by 1 g shaking table tests, Journal of the Korean Geotechnical Society, 26(8), 67-75.
  10. Hallquist, J. O., LS-DYNA Keyword user's Manual, Livermore Software Technology Corporation, Livermore, Calif., Arp., 2000.
  11. Hokmabadi, A.S., Fatahi, B. & Samali, B. (2014), Assessment of soil-pile-structure interaction influencing seismic response of mid-rise buildings sitting on floating pile foundations, Computers and Geotechnics, 55, 172-186. https://doi.org/10.1016/j.compgeo.2013.08.011
  12. Iai, S. (1989), Similitude for shaking table tests on soil-structure-fluid model in 1g gravitational field, Soils and Foundations, 29(1), 105-118. https://doi.org/10.3208/sandf1972.29.105
  13. Ko, S. (2020), Failure Behavior of Non-seismic RC Column with aspect ratio of 4.0, Korea Institute for Structural Maintenance and Inspection, 24(6), 59-66.
  14. Kagawa, T. (1978), On the similitude in model vibration tests of earth-structures. In Proceedings of the Japan Society of Civil Engineers, Japan Society of Civil Engineers, 1978(275), 69-77.
  15. Kokusho, T., & Iwatate, T. (1979), Scaled model tests and numerical analyses on nonlinear dynamic response of soft grounss: Proceedings of the Japan Society of Civil Engineers, 1979(285), 57-67.
  16. Kim, J. & Shin, M. (2011), Centrifuge-Shaking Table Test for Seismic Performance Evaluation of Subway Station, Korea Institute for Structural Maintenance and Inspection, 15(3), 99-105.
  17. Kim, S., Ahn, K. & Kang, H. (2018), A Study on the Characteristics of Bridge Bearings Behavior by Finite Element Analysis and Model Test, Korea Institute for Structural Maintenance and Inspection, 18(5), 96-106.
  18. Lee, J., Jung, H., Oh, J., Park, J. & Kim, S. (2014), Dynamic behavior of group piles according to pile cap embedded in sandy ground, Journal of the Korean Geoenvironmental Society, 19(10), 35-41. https://doi.org/10.14481/jkges.2018.19.10.35
  19. Lee, W. & Yhim, S. (2013), Study on Seismic Performance of RC Column with Super-Flexibility Membrane, Korea Institute for Structural Maintenance and Inspection, 17(5), 1-12.
  20. Ling, H.I., Mohri, Y., Leshchinsky, D., Burke, C., Matsushima, K. & Liu, H. (2005), Large-scale shaking table tests on modular-block reinforced soil retaining walls, Journal of Geotechnical and Geoenvironmental Engineering, 131(4), 465-476. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:4(465)
  21. Liu, S., Li, P., Zhang, W. & Lu, Z. (2020), Experimental study and numerical simulation on dynamic soil-structure interaction under earthquake excitations, Soil Dynamics and Earthquake Engineering, 138, 106333. https://doi.org/10.1016/j.soildyn.2020.106333
  22. Pitilakis, D., Dietz, M., Wood, D.M., Clouteau, D. & Modaressi, A. (2008), Numerical simulation of dynamic soil-structure interaction in shaking table testing, Soil dynamics and earthquake Engineering, 28(6), 453-467. https://doi.org/10.1016/j.soildyn.2007.07.011
  23. Qaftan, O.S., Toma-Sabbagh, T., Weekes, L. & Augusthus-Nelson, L. (2020), Validation of a finite element modelling approach on soil-foundation-structure interaction of a multi-storey wall-frame structure under dynamic loadings, Soil Dynamics and Earthquake Engineering, 131, 106041. https://doi.org/10.1016/j.soildyn.2020.106041
  24. Rayhani, M.H. & El Naggar, M.H. (2008), Numerical modeling of seismic response of rigid foundation on soft soil, International Journal of Geomechanics, 8(6), 336-346. https://doi.org/10.1061/(ASCE)1532-3641(2008)8:6(336)
  25. Shin, E.C., Kang, H.H., Kim, T.J., Chae, Y.S. & Park, J.J. (2011), Experimental Study on Seismic Performance Evaluation of Lake Dike Structures under Earthquake Loading, Journal of Korean Geosynthetics Society, 10(3), 53-62. https://doi.org/10.12814/JKGSS.2011.10.3.053
  26. Yu, H., Yan, X., Bobet, A., Yuan, Y., Xu, G. & Su, Q. (2018), Multi-point shaking table test of a long tunnel subjected to nonuniform seismic loadings, Bulletin of Earthquake Engineering, 16(2), 1041-1059. https://doi.org/10.1007/s10518-017-0223-6