• Title/Summary/Keyword: Structural safety test

Search Result 936, Processing Time 0.031 seconds

Structural Design and Verification of MEMS Solid Thruster for CubeSat Application (큐브위성 탑재를 위한 MEMS 고체 추력기의 구조설계 및 검증)

  • Jang, Su-Eun;Han, Sung-Hyeon;Kim, Tae-Gyu;Lee, Jong-Kwang;Jang, Tae-Seong;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.5
    • /
    • pp.432-439
    • /
    • 2015
  • MEMS solid thruster module is composed of solid thruster and its control board. It was developed for the purpose of an academic research. Therefore, thermo-mechanical design and verification for space usage were not considered in the design phase. To mount it on a cube satellite without any design modification, technical efforts at the system level structure design is required. In this study, we proposed a structural design concept to mount the MEMS thruster module by using brackets for guaranteeing structure safety under launch loads and easier mating and de-mating of MEMS thruster module during test phase. The effectiveness of the design has been verified through structural analysis and vibration test. In addition, electrical connection method using spring pins between MEMS thruster and control board is effective for guaranteeing the structural safety under launch vibration loads.

Safety Evaluation of a Shipping Capsule for Special Form Radioisotope (특수형 방사성 동위원소 운반캡슐의 안전성 평가)

  • Lee, Ju-Chan;Seo, Ki-Seog;Ku, Jeong-Hoe;Bang, Kyoung-Sik;Han, Hyon-Soo;Park, Seong-Won
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.1
    • /
    • pp.35-43
    • /
    • 2001
  • All of sealing capsules to transport a special form radioactive material should be designed and fabricated in accordance with the design criteria prescribed in IAEA standards and domestic regulations. The objective of this study is to demonstrate the safety of a shipping capsule for $^{192}Ir$ special form radioisotope which produced in the HANARO. The safety tests were carried out for the impact, percussion, bending and heat test conditions. And leakage tests were carried out before and after the each test. Also, the safety analyses wert performed using computer codes in order to verify the test results. The capsule showed slight scratches and deformation, and maintained its structural and thermal integrities in all tests without any severe damage or melting. It also met the allowable limits of leakage rate after each test. Therefore, it has been verified that the capsule was designed and fabricated to meet all requirements for the special form.

  • PDF

Aerodynamic and Structural Design on Small Wind Turbine Blade Using High Performance Configuration and E-Glass/Epoxy-Urethane Foam Sandwich Composite Structure

  • Kong, Changduk;Bang, Johyuk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.401-407
    • /
    • 2004
  • This study proposes a interim development result for the l-㎾ class small wind turbine system, which is applicable to relatively low wind speed regions like Korea and has the variable pitch control mechanism. In the aerodynamic design of the wind turbine blade, parametric studies were carried out to determine an optimum aerodynamic configuration which is not only more efficient at low wind speed but whose diameter is not much larger than similar class other blades. A light composite structure, which can endure effectively various loads, was newly designed. In order to evaluate the structural design of the composite blade, the structural analysis was performed by the finite element method. Moreover both structural safety and stability were verified through the full-scale structural test.

  • PDF

A Study on the Static and Fatigue Behavior of Steel-Confined Prestressed Concrete Girder (강재로 구속된 프리스트레스트 콘크리트 합성거더의 정적 및 피로거동)

  • Kim, Jung Ho;Park, Kyung Hoon;Hwang, Yoon Koog;Lee, Sang Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.6 s.73
    • /
    • pp.725-736
    • /
    • 2004
  • A new type of girder, called steel-confined prestressed concrete girder (SCP girder), has been developed, which maximizes the structural advantages of concrete, steel, and PS tendon, and improves on the shortcomings of steel plate girder, PSC I-girder, and preflex girder bridge for use in the construction of middle- or long-span bridges. To verify the propriety of design, structural safety, and applicability of this girder, a static load test was carried out (Kim et al.., 2002). Since the main damage typically sustained by steel bridges results from the fatigue caused by the repetition of traffic loads, fatigue safety must therefore be guaranteed in applying the SCP girder in the construction of real bridges. In this study, a fatigue test was carried out to investigate fatigue behavior and provide basic data for fatigue design. Based on the fatigue test, the fatigue safety of the girder was estimated. For the fatigue test, 10-m specimens were designed for a standard-design truckload (DB-24). A static load test was also performed before the fatigue test to analyze the structural behavior of the specimens. After the fatigue test, outer steel plates were removed to observe the condition of the concrete in the girder.

A Study on the Automotive Structural Change of High Intensity Discharge Head lamp (자동차 전조등 고압 방전 램프 구조 변경에 대한 연구)

  • Lim, Ju-Hun
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.2
    • /
    • pp.53-60
    • /
    • 2008
  • A test was conducted using two high density discharge lamps, the H2D and the structurally new H4D. They were tested for luminous illumination and luminous temperature in the day and night time. The test was conducted without crippling the performance of the H2D by adding a magnetic actuator, enabling it to move left to right, and up and down. By making these modifications we constructed a sample of the H4D. We compared the H2D and the H4D sample's luminous illumination and luminous temperature by using a photometer and a digital thermometer in the day and night time. We discovered that the H2D and H4D performed similarly from the data we gathered. Now we know the H4D has potential use and extensive research needs to be made to gather more detailed data.

Analysis for Mechanical Behavior of GFRP Rock Bolt for Permanent Support of Tunnel (영구 터널지보재로서의 활용을 위한 GFRP 록볼트의 역학적 거동 분석)

  • Sim, Jong-Sung;Kang, Tae-Sung;Lee, Yong-Taek;Kim, Hyun-Joong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.124-131
    • /
    • 2010
  • Rock Bolt generally utilizes deformed reinforcing bar welded from structural steel of which strength is higher than required for making advantageous use of the support function of ground. In the condition with highly corrosive underground water, however, problem frequently occurs on tunnel and slope stabilization in terms of repair, rehabilitation and maintenance issues due to the destruction of Rock Bolt by corrosion of steel. A structural performance evaluation for GFRP Rock Bolt was conducted for the purpose of resolving the foregoing problem and at the same time developing a permanently-usable support material. This study intended to evaluate the safety factor of GFRP Rock Bolt by implementing the slope stability interpretation via structural analysis on the basis of its structural characteristics derived from both tensile force function test and shear force function test. It is judged based on the results that GFRP Rock Bolt would secure sufficient ground stability as an alternative material for existing Steel Rock Bolt.

Numerical analysis and fluid-solid coupling model test of filling-type fracture water inrush and mud gush

  • Li, Li-Ping;Chen, Di-Yang;Li, Shu-Cai;Shi, Shao-Shuai;Zhang, Ming-Guang;Liu, Hong-Liang
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.1011-1025
    • /
    • 2017
  • The geological conditions surrounding the Jijiapo Tunnel of the Three Gorges Fanba Highway project in Hubei Province are very complex. In this paper, a 3-D physical model was carried out to study the evolution process of filling-type fracture water inrush and mud gush based on the conditions of the section located between 16.040 km and 16.042 km of the Jijiapo Tunnel. The 3-D physical model was conducted to clarify the effect of the self-weight of the groundwater level and tunnel excavation during water inrush and mud gush. The results of the displacement, stress and seepage pressure of fracture and surrounding rock in the physical model were analyzed. In the physical model the results of the model test show that the rock displacement suddenly jumped after sustainable growth, rock stress and rock seepage suddenly decreased after continuous growth before water inrushing. Once water inrush occured, internal displacement of filler increased successively from bottom up, stress and seepage pressure of filler droped successively from bottom up, which presented as water inrush and mud gush of filling-type fracture was a evolving process from bottom up. The numerical study was compared with the model test to demonstrate the effectiveness and accuracy of the results of the model test.

Full-scale test of dampers for stay cable vibration mitigation and improvement measures

  • Zhou, Haijun;Xiang, Ning;Huang, Xigui;Sun, Limin;Xing, Feng;Zhou, Rui
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.4
    • /
    • pp.489-506
    • /
    • 2018
  • This paper reported test of full-scale cables attached with four types of dampers: viscous damper, passive Magneto-Rheological (MR) damper, friction damper and High Damping Rubber (HDR) damper. The logarithmic decrements of the cable with attached dampers were calculated from free vibration time history. The efficiency ratios of the mean damping ratios of the tested four dampers to theoretical maximum damping ratio were derived, which was very important for practical damper design and parameter optimization. Non-ideal factors affecting damper performance were discussed based on the test results. The effects of concentrated mass and negative stiffness were discussed in detail and compared theoretically. Approximate formulations were derived and verified using numerical solutions. The critical values for non-dimensional concentrated mass coefficient and negative stiffness were identified. Efficiency ratios were approximately 0.6, 0.6, and 0.3 for the viscous damper, passive MR damper and HDR damper, respectively. The efficiency ratio for the friction damper was between 0-1.0. The effects of concentrated mass and negative stiffness on cable damping were positive as both could increase damping ratio; the concentrated mass was more effective than negative stiffness for higher vibration modes.

Systems to prevent the load resistance loss of pallet racks exposed to cyclic external force

  • Heo, Gwanghee;Kim, Chunggil;Baek, Eunrim;Jeon, Seunggon
    • Structural Engineering and Mechanics
    • /
    • v.83 no.6
    • /
    • pp.745-756
    • /
    • 2022
  • This study aims to determine the cause of the load resistance loss in storage racks that can be attributed to external forces such as earthquakes and to improve safety by developing reinforcement systems that can prevent load resistance loss. To this end, a static cyclic loading test was performed on pallet racks commonly used in logistics warehouses. The test results indicated that a pallet rack exposed to an external force loses more than 50% of its load resistance owing to the damage caused to column-beam joints. Three reinforcement systems were developed for preventing load resistance loss in storage racks exposed to an external force and for performing differentiated target functions: column reinforcement device, seismic damper, and viscoelastic damper. Shake table testing was performed to evaluate the earthquake response and verify the performance of these reinforcement systems. The results confirmed that, the maximum displacement, which causes the loss of load resistance and the permanent deformation of racks under external force, is reduced using the developed reinforcement devices. Thus, the appropriate selection of the developed reinforcement devices by users can help secure the safety of the storage racks.

Strength Assessment of High-Pressure Ball Valve for Topside Process Unit (해양플랜트 탑사이드용 고압 볼밸브에 대한 구조 안전성 평가)

  • Oh, Jeong-Sik;Kim, Yooil;Jeong, Nakshin;Kim, Sangmyung
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.100-108
    • /
    • 2016
  • A high-pressure ball valve was developed, and both the structural strength and sealing performance were assessed based on a nonlinear finite element analysis. Different parts were modeled with solid elements and assembled, taking into account both contact and sliding effects. Three different loading scenarios were analyzed, including a high-pressure closure test and fire and shell test conditions. The structural safety of each part was checked under each loading condition, and the sealing performance was also investigated to validate the performance of the valve.