• Title/Summary/Keyword: Structural safety test

Search Result 936, Processing Time 0.032 seconds

Improvement in Safety Evaluation of Structures using the Bayesian Updating Approach (베이스 경신법을 활용한 구조물 안전성평가 개선)

  • Park, Kidong;Lee, Sangbok;Kim, Junki;Rha, Changsoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.115-122
    • /
    • 2016
  • The classical statistical approach using test data samples to estimate true value of Random Variables by calculating mean and variation (standard deviation or coefficient of variation) of samples is very useful to understand the existing condition of the structure. But with this classical approach, our prior knowledge through educational background and professional experience cannot provide any benefit to make decisions by the structural engineers. This paper shows the role of Bayesian methodology by providing chance of using valuable prior knowledge to come up with more accurate estimation of structural condition. This paper also shows how important it is to have a proper prior estimate of Random Variables and corresponding confidence level through gathering and studying more relevant information.

Shake table test of Y-shaped eccentrically braced frames fabricated with high-strength steel

  • Lian, Ming;Su, Mingzhou
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.501-513
    • /
    • 2017
  • To investigate the seismic performance of Y-shaped eccentrically braced frames fabricated with high-strength steel (Y-HSS-EBFs), a shake table test of a 1:2 scaled three-story Y-HSS-EBF specimen was performed. The input wave for the shake table test was generated by the ground motions of El Centro, Taft, and Lanzhou waves. The dynamic properties, acceleration, displacement, and strain responses were obtained from the test specimen and compared with previous test results. In addition, a finite element model of the test specimen was established using the SAP2000 software. Results from the numerical analysis were compared with the test specimen results. During the shake table test, the specimen exhibited sufficient overall structural stiffness and safety but suffered some localized damage. The lateral stiffness of the structure degenerated during the high seismic intensity earthquake. The maximum elastic and elastoplastic interstory drift of the test specimen for different peak ground accelerations were 1/872 and 1/71, respectively. During the high seismic intensity earthquake, the links of the test specimen entered the plastic stage to dissipate the earthquake energy, while other structural members remained in the elastic stage. The Y-HSS-EBF is a safe, dual system with reliable seismic performance. The numerical analysis results were in useful agreement with the test results. This finding indicated that the finite element model in SAP2000 provided a very accurate prediction of the Y-HSS-EBF structure's behavior during the seismic loadings.

A Study on the Mechanical Properties of SM490A by FCAW Welding Attitude (SM490A의 FCAW 용접 자세별 형상에 관한 기계적 특성 연구)

  • Lim, Kwang Mook;Lee, Sung Ill
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.6
    • /
    • pp.7-12
    • /
    • 2019
  • Flux Cored Arc Welding (FCAW), which has been widely used in many industries, was developed in the 1950s to supplement shortcomings of the Shielded Metal Arc Welding (SMAW). FCAW has an advantage in that it can weld regardless of postures and give good quality results in the filed with many different working conditions. In this study, SM490A (rolled steel for welding structural purpose) with different thicknesses (L:25T+R:30T) were welded using FCAW. Then the mechanical properties (tension test, bending test, hardness test, impact test and macro test) were analyzed and the following conclusions were drawn. In the tensile test, it exceeds the KS standard tensile strength range (400~510) in all welding positions, which means there is a problem in the tensile force transmission performance. In the bending test, it was found that most of the specimens did not exhibit surface rupture or other defects during bending test and they exhibit sufficient toughness even after plastic deformation. In the hardness test, all the results were lower than the standard value of 350 Hv of KS B 0893, which means they have good hardness. In the impact test, all results were larger than the KS reference value of 27J. In the macro test, they showed uniform structure state by the shape of the weld, and there was risk of lamination because no internal defects, bubbles, or impurities were found on the surface of the weld.

Experimental Evaluation of Deployment Time of Active Hood Lift System According to Structural Improvement (능동후드리프트 시스템의 구조 설계에 따른 전개시간의 실험적 평가)

  • Lee, Tae-Hoon;Yoon, Gun-Ha;Park, Chun-Yong;Kang, Je-Won;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.3
    • /
    • pp.265-269
    • /
    • 2016
  • In this research, the performances of active hood lift system(AHLS) are investigated according to the structural improvement through the experimental test. After introducing the working principle of the AHLS activated by a gunpowder actuator, the structural problems that cause the inefficiencies in the actuation are analyzed to reduce the deployment time of system. Sequentially, the improved structural model is proposed base on the analysis. The deployment time of AHLS are evaluated by the experimental test, and it has been identified that the improved model can provide a faster deploying time of AHLS.

Fire Resistance Performance and Thermal Performance Evaluation of Structural Insulated Panels for Low-Energy Houses (구조단열패널의 저에너지주택 적용을 위한 내화 및 단열성능 평가)

  • Lee, Hyeon-Ju;Nah, Hwan-Seon;Lee, Cheol-Hee;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.2
    • /
    • pp.36-46
    • /
    • 2012
  • Structure Insulated Panel (SIP) is an wooden structure material with which structure and insulation functions are satisfied. Hence, it would be a cost-effective model to implement low energy house which has higher insulation and structure performance and which the wall thickness is able to be reduced. In this study, performance of thermal insulation and fire resistance were evaluated in order to verify applicability to low energy house. Fire resistance test is performed on vertical load bearing members for partitions, and the test results satisfy one hour of fire resistance condition according to KS F 2257. The members include two layers of fireproof gypsum board with thicknesses of 12.5mm attached to SIP. Thermal insulation performance is satisfied with the 2012 standard ($0.225W/m^2{\cdot}K$). As the performance of resistance and thermal insulation are satisfied, SIP is expected to be applied to low energy building materials. In the future, the structural safety will be confirmed by structural performance and seismic performance test and the guidelines for distribution will be drawn up.

A Pressure Vessel Design and Structural Analysis of a Semi-Autonomous Underwater Vehicle(SAUV) (복합재 반자율 무인잠수정(SAUV)의 내압선체 설계 및 구조해석)

  • Joung, Tae-Hwan;Lee, Chong-Moo;Hong, Seok-Won;An, Chin-Woo;Kim, Tae-Wook;Kim, Jin-Bong
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.34-39
    • /
    • 2002
  • A Semi-Autonomous Underwater Vehicle (SAUV) capable of simple work at sea bed is under development in KRISO-KORDI. A pressure vessel of SAUV which is composed of FRP was manufactured to load electronic equipments. The objective of this paper is to verify the safety of the pressure vessel through conducting the structural analysis and test in pressure tank. Strain and stress under unit load were obtained by using ANSYS in the linear structural analysis. And local buckling analysis was performed with NASTRAN for the middle cylindrical hull. For the pressure test, strains were measured at three point. We found that the results by linear structural analysis and experiment are coincide well at the points where buckling does not occur. Maximum depth was estimated to be 250m by the local buckling analysis.

  • PDF

KSTAR Superconducting Magnet Supporting Post Prototype Manufacturing and Structural Load Test (KSTAR 초전도자석 지지각 시작품재작 및 구조시험)

  • 허남일;이영신
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.1
    • /
    • pp.45-49
    • /
    • 2001
  • A magnet supporting post installed between the lower TF coil tooled by 4.5 K supercritical helium and the cryostat base is one of the most important components of the superconducting magnet supporting structure for KSTAR Tokamak. This structure should be flexible to absorb thermal shrink of the magnet and also should be rigid to support the magnet weight and the Plasma disruptions load. The Post was designed with stainless steel 316LN and CFRP that have low thermal conductivity and high structural strength at low temperature. In order to verify the possibility of fabrication and the structural safety. a whole scale prototype of the KSTAR magnet supporting post was manufactured and tested. Static and compressive cyclic load tests under the maximum Plasma vertical disruption load and the magnet dead weight were performed. The teat results showed that the magnet supporting post of KSTAR Tokamak was possible to manufacture and structurally rigid.

  • PDF

A Study on Design and Test for Composite Blade of Small Scale Wind Turbine System (소형 풍력발전 시스템용 복합재 블레이드의 설계 및 시험에 관한 연구)

  • Kong Changduk;Bang Johyug;Park Jongha;Oh Kyungwon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.125-130
    • /
    • 2004
  • This study proposes a development for the l-kW class small wind turbine system, which is applicable to relatively low wind speed region like Korea and has the variable pitch control mechanism. In the aerodynamic design of the wind turbine blade, parametric studies were carried out to determine an optimum aerodynamic configuration which is not only more efficient at low wind speed but whose diameter is not much larger than similar class other blades. A light composite structure, which can endure effectively various loads, was newly designed. In order to evaluate the structural design of the composite blade, the structural analysis was performed by the finite element method. Moreover both structural safety and aerodynamic performance were verified through the prototype test.

  • PDF

A Study on the Computational Structural Analysis Using the Field Test Data of Onshore Drilling Mud Motor (육상시추용 드릴링 추진체의 실증시험 데이터를 활용한 전산구조해석에 관한 연구)

  • Park, Sung-Gyu;Kim, Seung-Chan;Kwon, Seong-Yong;Shin, Chul-Soon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.603-609
    • /
    • 2022
  • Bottom hole assembly(BHA) is a key component of the drilling system, consisting of various components and tools(including the drill bit and mud motor) which operate at the bottom of the wellbore and physically drill the rock. This paper investigates the dynamic characteristics of the mud motor which is a drilling propulsion tool. And computational structural analysis is performed to calculate the von-Mises stress and the safety factor of components constituting the mud motor. In this process, the field test data of onshore drilling are used for analysis.

A Theoretical Analysis of the Acceptability of Design Stress Value for the Fuel Rod with Nonlinear Thermal Stresses (비선형 분포의 열응력이 작용하는 Fuel Rod에서 설계 응력값의 적합성여부에 대한 이론적 해석)

  • 호광일
    • Journal of Energy Engineering
    • /
    • v.12 no.3
    • /
    • pp.177-183
    • /
    • 2003
  • The purpose of this paper is to verify that the design stress value of fuel rod for the irradiation test satisfies the structural design requirement. In this structural safety analysis thermal effect is the most severe element for the safety. The thermal effects are very complicated problem to be analyzed for the structural safety in short hand. By the application of theoretical analysis, the design margin of stress which was used in this fuel rod design was verified in the conservative point of view. In the future design of fuel rod, this analysis can be used as the theoretical method for the verification of safe design.