• Title/Summary/Keyword: Structural safety test

Search Result 933, Processing Time 0.023 seconds

Structural Safety of Nozzle Plate using Simulation (시뮬레이션을 이용한 노즐플레이트의 구조안전성)

  • Jung, Jong Yun;Park, Heesung;Kim, Joon-Seob
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.3
    • /
    • pp.186-193
    • /
    • 2018
  • Modern manufacturing industries is to produce both precise and robust mechanical parts without failure while they are in service. In order to prevent a part failure for its lifetime, a mechanical design for a part should be examined on a basis of mechanical simulation. A nozzle plate, being a key part in steam engines, changes flow directions of steam in a turbine used in power plant. This paper is to the design and test for part safety and durability. Currently, nozzle plates are fabricated by welding nozzles to their plates. Welding causes some defects on the used materials while they are being manufactured. Another major defect is un-even pitches between welded nozzles. Welding causes phase changes because of high melting temperature of metal. This leads to decay on the welding spots, which weakens their structural strength and then, may lead to early damages on mechanical structures. This research proposes assembly-typed nozzle plate without welding. From the beginning, nozzle and plate are designed for insertion-typed assembly. Nozzle head and foot are designed in accordance with the grooves on outer ring and inner ring of a plate to make mating surfaces. Then the nozzle plate should be proved for structural and fatigue safety before they are put in manufacturing. This research adopts commercial softwares for modeling and mechanical simulation. The test result shows that the design with smaller mating area and deeper insertion produces higher safety in terms of structure and durability. From the conclusion, this paper proposes the assembly-typed nozzle plate to replace the welding typed.

Structural Design and Analysis for Duct Stand of Blowers (송풍기 덕트 스탠드의 구조 설계 및 해석)

  • Hyunbum Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.149-153
    • /
    • 2023
  • In this study, structural design and analysis of a duct stand for blowers were performed. This structure was an axial fan and blower for wind tunnel of the vehicle environmental test chamber. The design of the blower duct stand support structure was performed by investigation on various loads. Additionally, self-weight of the motor and weight of the duct were investigated and applied. The duct stand structure was designed by analyzing the load. The safety of the structural design results was evaluated through finite element analysis. Finally, the safety of the design result was verified.

Flexural Test and Structural Analysis to Develope a Lining Board of New-Concept (신개념의 복공판을 개발하기 위한 휨실험 및 구조해석)

  • Kim, Chun-Ho;Yi, Seong-Tae;Kim, In-Sic
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.10-17
    • /
    • 2015
  • In this paper, to evaluate and verify safety and performance of new-concept lining board, the experiments and analyses were performed. From the flexural tests, it was noted that the failure occurred at the load of 664kN. At structural analyses based on test results, when the loadings are the unit load 100kN and failure load 664kN, the maximum displacements at the middle part of lining board were 2.58mm and 27.01mm, respectively. In addition, at the elastic range and the plastic range, their load carrying capacities were evaluated as DB-34 and DB-41, respectively. Accordingly, it can be concluded that, since the lining board developed in this study satisfy the design load and structural safety, it supplemented its disadvantages and can apply to construction site.

A Study on the Structural Performance of the Building Exterior Panel Using the Moving Clips (이동 클립을 이용한 건축물 외장재의 구조적 성능에 관한 연구)

  • Kwak, Eui-Shin;Ki, Chang-Gun;Lee, Sang-Ho;Shon, Su-Deok;Lee, Seung-Jae
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.29-36
    • /
    • 2017
  • A recent global trend in the increase of earthquake-related disasters has become so frequent as to cause various damages to a wide range of mid- to high-rise buildings. Particularly, more attention is being paid to the effect of horizontal load in high-rise buildings not only on the key structural elements of the structures, but also on the possibility of the secondary damages to them due to the failure of exterior panels, which are non-structural elements, but such damages are difficult to cope with as they may be caused by unexpected changes. The present study examined exterior panels using moving clips to prevent such secondary damages on the non-structural elements and analyzed the structural performance of these exterior panels through the finite element analysis and the shaking table test. The analysis results showed that the exterior panels using moving clips satisfied the structural performance against the allowable story drift of KBC2009 and the safety of the exterior panels was verified by the shake table test.

A Mediating Effect of Job Stress Between Physical Environmental Risk and Safety Behavior, and Moderating Effect of Perceived Control (물리적 환경 위험도가 작업자의 안전행동에 미치는 영향, 직무 스트레스의 매개 효과 및 지각된 통제의 조절 효과)

  • Kim, Byung-Jik;Ji, Won-Koo;Jeon, Sang-Gil
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.105-111
    • /
    • 2017
  • This research examined if job stress mediates the relationship between physical environmental risk and safety behavior of employees. In addition, we investigated whether perceived control moderates the physical environmental risk-job stress link. In order to test our hypotheses, 1005 employees in various fields of firms were participated. Using structural equation modeling(SEM), we conducted moderated mediation model analysis that elaborately test the hypotheses. The results demonstrated that job stress mediated the physical environmental risk-safety behavior link. Furthermore, the relationship between physical environmental risk and job stress was moderated by perceived control.

Study on the Safety Assurance for the Temporary Structures (가설구조물 안전성 확보 방안 연구)

  • Lee, Jung Seok;Moon, Seong Oh;Youn, Ye Bin;Lim, Nam Gi;Oh, Tae Keun
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.1
    • /
    • pp.73-80
    • /
    • 2018
  • According to the statistics publication of KOSHA, more than half of serious accidents at the construction sites were related to the temporary works and/or the temporary structures such as scaffoldings, shores, earth retaining walls, etc. The structural failures are occurred because of the overload acting on the structures or lack of performance of the one or more members of the structures. For the prevention of the collapse accidents relating to the temporary structures at the construction sites, we have to control construction processes not to occur the overload and also to control the performance and quality of each member of the temporary structures. MOLIT has amended the "Construction Technology Promotion Act" on Jan. 7th, 2015 to ensure the structural safety of the temporary structures. According to the Act, the designers of the construction design projects should check the structural integrity of the structures including the temporary structures and the construction companies have to let 'the Relative Professionals' confirm the structural integrity of temporary structures, the shores(${\geq}5m$ high) and the scaffolds(${\geq}31m$ high), before construction. Also, MOLIT has amended the "Regulation for Construction Technology Promotion Act" on Jul. 4th, 2016 for quality management and testing of temporary equipments. According th this regulation, the construction companies and supervisors should manage and test the temporary equipments before using them. In this paper, the standard drawings of the shores(< 5 m high) and the scaffolds(< 31 m high) and the amended "Business Guideline for Quality Management of Construction Work" are presented. As the result of this study, MOLIT noticed the amended "Business Guideline for Quality Management of Construction Work" on Jul. 1st, 2017.

COLLAPSE CHARACTERISTICS OF ALUMINUM EXTRUSIONS FILLED WITH STRUCTURAL FOAM FOR SPACE FRAME VEHICLES

  • Kim, B.J.;Heo, S.J.
    • International Journal of Automotive Technology
    • /
    • v.4 no.3
    • /
    • pp.141-147
    • /
    • 2003
  • For improving high-safety, convenience, and ride comfort, the automotive design suffers from radical increase of the weight, the recycling-related rules, regulations on the waste gas, and environmental protection of the resources. Among them, it is well known that the weight increase is the most critical. Thus, in order to minimize the weight of the body-in-white that takes up 20-30% of the whole weight of the automobile, most automotive manufacturers have attempted to develop the aluminum intensive body-in-white using aluminum space frames. In this research, the crush test and simulation for aluminum extrusions are performed to evaluate the collapse characteristics of that light weighted material. Also. the same test and simulation was done for aluminum extrusions filled with structural foam. Then, these results are analyzed and compared. From these studies, the effectiveness of structural foam is evaluated in improving automotive crashworthiness. Finally, the design strategy and guideline of the structural form are suggested in order to improve the crashworthiness for aluminum space frame in the vehicle.

Bridge Safety Evaluation Based on the System Identification (구조동정법(構造同定法)에 의한 교량(橋梁)의 안전성(安全性) 평가(評價))

  • Kim, Kee-Dae;Lee, Sang-Wha
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.2
    • /
    • pp.162-169
    • /
    • 1998
  • This paper presents the application of system identification approaches for the safety assessment of RC-T type bridge based on the result of field test. For these problems, the moment of inertia of cross-sectional area and the natural frequency of bridge were used as structural parameters, the SAP90 program for the structural analysis and the SLP method for the minimum error. As a result, it is found that the proposed algorithm for this study appears applicable to real structures with reasonable complexity. It is shown that the introduction of approximate quadratic equations is more realistic and timesaving than the common methods.

  • PDF

A Study on the Buckling Characteristics of Steel Pipe Scaffold (강관비계의 좌굴특성에 관한 연구)

  • Paik, Shin-Won;Song, In-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.1
    • /
    • pp.57-61
    • /
    • 2010
  • Formwork is a temporary structure that supports its weight and that of fresh concrete as well as construction live loads. Scaffoling is a temporary frame used to support people and material in the construction or repair of buildings and other large structures. It is usually a modular system of metal pipes, although it can be made out of other materials. Bamboo is still used in some Asian countries like China. The purpose of a working scaffold is to provide a safe place of work with safe access suitable for the work being done. In construction site, steel pipes are usually used as scaffolds. In this study, scaffolding systems which is changed according to sleeper and joist space were measured by buckling test. Buckling load of respective scaffolding system was analyzed by structural analysis program(MIDAS). Buckling load of scaffold with/without wall connection and footboard was got by test and structural analysis. According to these results,we know that scaffolding system of case 3 is suitable. Buckling load of scaffold with wall connection is higher than without wall connection. So wall connection is important in scaffoling systems. Footboard in the scaffolding systems is not effective against promotion of buckling load. Finally, the present study results will be used to design scaffolding systems safely in the construction sites.

A Study on the Buckling Characteristics of Pipe Support(V6) (파이프서포트(V6)의 좌굴특성에 관한 연구)

  • Paik, Shin-Won;Song, In-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.3
    • /
    • pp.59-62
    • /
    • 2011
  • Among the accidents and failures that occur during concrete construction, many are formwork failures which usually happen when concrete is being placed. A system of formwork filled with wet concrete has its weight at the top and is not basically a stable structure. Slab formwork consists of sheathing, stringer, hanger and shore. There are several types of adjustable shores. In construction site, pipe supports are usually used as a shore of slab formwork. In this study, pipe support systems with/without horizontal connector were measured by buckling test. Buckling load of respective pipe support system was analyzed by structural analysis program(MIDAS). Buckling load of pipe support with/without horizontal connector was got by test and structural analysis. According to these results, we know that horizontal connector made pipe support system very safe. Buckling load of pipe support with horizontal connector is 56% higher than that without horizontal connector. So horizontal connector is important in slab formwork systems. Finally, the present study results will be used to design slab formwork system safely in the construction sites.