• Title/Summary/Keyword: Structural robustness

Search Result 317, Processing Time 0.026 seconds

Shape Optimization and Reliability Analysis of the Dovetail of the Disk of a Gas Turbine Engine (가스터빈엔진 디스크의 도브테일 형상 최적화와 신뢰도 해석)

  • Huh, Jae-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.379-384
    • /
    • 2014
  • The most critical rotating parts of a gas turbine engine are turbine blades and disc, given that they must operate under severe conditions such as high turbine inlet temperature, high speeds, and high compression ratios. Owing to theses operating conditions and high rotational speed energy, some failures caused by turbine disks and blades are categorized into catastrophic and critical, respectively. To maximize the margin of structural integrity, we aim to optimize the vulnerable area of disc-blade interface region. Then, to check the robustness of the obtained optimized solution, we evaluated structural reliability under uncertainties such as dimensional tolerance and fatigue life variant. The results highlighted the necessity for and limitations of optimization which is one of deterministic methods, and pointed out the requirement for introducing reliability-based design optimization which is one of stochastic methods. Thermal-structural coupled-filed analysis and contact analysis are performed for them.

Design Algorithm of Flexible Propeller by Fluid-Structure Interactive Analysis (유체-구조 반복해석법에 의한 유연 프로펠러의 설계 알고리듬 개발)

  • Jang, Hyun-Gil;Nho, In Sik;Hong, Chang-Ho;Lee, Chang-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.6
    • /
    • pp.528-533
    • /
    • 2012
  • Flexible composite propellers are subject to large deformation under heavy loading, and hence the hydrodynamic performance of deformed propeller might deviate from that of the metallic propeller under negligible deformation. To design the flexible propeller, it is therefore necessary to be able to evaluate the structural response of the blades to the hydrodynamic loadings, and then the influence of the blade deformation upon the hydrodynamic loadings. We use the lifting-surface-theory-based propeller analysis and design codes in solving the hydrodynamic problem, and the finite-element-method program formulated with 20-node iso-parametric solid elements for the analysis of the structural response. The two different hydrodynamic and structural programs are arranged to communicate through the carefully-designed interface scheme which leads to the derivation of the geometric parameters such as the pitch, the rake and the skew distributions common to both programs. The design of flexible propellers, suitable for manufacturing, is shown to perform the required thrust performance when deformed in operation. Sample design shows the fast iteration scheme and the robustness of the design procedure of the flexible propellers.

Collagen Scaffolds in Cartilage Tissue Engineering and Relevant Approaches for Future Development

  • Irawan, Vincent;Sung, Tzu-Cheng;Higuchi, Akon;Ikoma, Toshiyuki
    • Tissue Engineering and Regenerative Medicine
    • /
    • v.15 no.6
    • /
    • pp.673-697
    • /
    • 2018
  • BACKGROUND: Cartilage tissue engineering (CTE) aims to obtain a structure mimicking native cartilage tissue through the combination of relevant cells, three-dimensional scaffolds, and extraneous signals. Implantation of 'matured' constructs is thus expected to provide solution for treating large injury of articular cartilage. Type I collagen is widely used as scaffolds for CTE products undergoing clinical trial, owing to its ubiquitous biocompatibility and vast clinical approval. However, the long-term performance of pure type I collagen scaffolds would suffer from its limited chondrogenic capacity and inferior mechanical properties. This paper aims to provide insights necessary for advancing type I collagen scaffolds in the CTE applications. METHODS: Initially, the interactions of type I/II collagen with CTE-relevant cells [i.e., articular chondrocytes (ACs) and mesenchymal stem cells (MSCs)] are discussed. Next, the physical features and chemical composition of the scaffolds crucial to support chondrogenic activities of AC and MSC are highlighted. Attempts to optimize the collagen scaffolds by blending with natural/synthetic polymers are described. Hybrid strategy in which collagen and structural polymers are combined in non-blending manner is detailed. RESULTS: Type I collagen is sufficient to support cellular activities of ACs and MSCs; however it shows limited chondrogenic performance than type II collagen. Nonetheless, type I collagen is the clinically feasible option since type II collagen shows arthritogenic potency. Physical features of scaffolds such as internal structure, pore size, stiffness, etc. are shown to be crucial in influencing the differentiation fate and secreting extracellular matrixes from ACs and MSCs. Collagen can be blended with native or synthetic polymer to improve the mechanical and bioactivities of final composites. However, the versatility of blending strategy is limited due to denaturation of type I collagen at harsh processing condition. Hybrid strategy is successful in maximizing bioactivity of collagen scaffolds and mechanical robustness of structural polymer. CONCLUSION: Considering the previous improvements of physical and compositional properties of collagen scaffolds and recent manufacturing developments of structural polymer, it is concluded that hybrid strategy is a promising approach to advance further collagen-based scaffolds in CTE.

Hybrid Control System Using On-Off Type LQG Algorithm (On-Off 형태의 LQG 알고리즘을 이용한 복합제어 시스템)

  • Jung Hyung-Jo;Yoon Woo-Hyun;Lee In-Won;Park Kyu-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.227-243
    • /
    • 2005
  • This paper presents a hybrid control system combining lead rubber bearings and hydraulic actuators for seismic response control of a cable stayed bridge. Because multiple control devices are operating, a hybrid control system could improve the control performances. However, the overall system robustness may be impacted negatively by additional active control devices. Therefore, a secondary on-off type controller according to the responses of lead rubber bearings is combined with LQG algorithm to improve the controller robustness. Numerical simulation results show that control performances of the hybrid system controlled by an on off type LQG algorithm are improved compared to those of the passive and active control systems and are similar to those of performance oriented hybrid system controlled by a LQG algorithm with the similar peak and normed control forces. Furthermore, it is verified that the hybrid system with an on-off type LQG controller is more robust for stiffness matrix perturbation than conventional hybrid control of system, and there are no signs of instability in the overall system. The proposed control system also maintains the control performance under not only the design earthquakes but also the other earthquakes. Therefore, the hybrid control system using on-off type LQG algorithm could be proposed as an improved control strategy for seismically excited cable-stayed bridges containing many uncertainties.

A Study on Robust Optimal Sensor Placement for Real-time Monitoring of Containment Buildings in Nuclear Power Plants (원전 격납 건물의 실시간 모니터링을 위한 강건한 최적 센서배치 연구)

  • Chanwoo Lee;Youjin Kim;Hyung-jo Jung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.155-163
    • /
    • 2023
  • Real-time monitoring technology is critical for ensuring the safety and reliability of nuclear power plant structures. However, the current seismic monitoring system has limited system identification capabilities such as modal parameter estimation. To obtain global behavior data and dynamic characteristics, multiple sensors must be optimally placed. Although several studies on optimal sensor placement have been conducted, they have primarily focused on civil and mechanical structures. Nuclear power plant structures require robust signals, even at low signal-to-noise ratios, and the robustness of each mode must be assessed separately. This is because the mode contributions of nuclear power plant containment buildings are concentrated in low-order modes. Therefore, this study proposes an optimal sensor placement methodology that can evaluate robustness against noise and the effects of each mode. Indicators, such as auto modal assurance criterion (MAC), cross MAC, and mode shape distribution by node were analyzed, and the suitability of the methodology was verified through numerical analysis.

Pipeline Structural Damage Detection Using Self-Sensing Technology and PNN-Based Pattern Recognition (자율 감지 및 확률론적 신경망 기반 패턴 인식을 이용한 배관 구조물 손상 진단 기법)

  • Lee, Chang-Gil;Park, Woong-Ki;Park, Seung-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.4
    • /
    • pp.351-359
    • /
    • 2011
  • In a structure, damage can occur at several scales from micro-cracking to corrosion or loose bolts. This makes the identification of damage difficult with one mode of sensing. Hence, a multi-mode actuated sensing system is proposed based on a self-sensing circuit using a piezoelectric sensor. In the self sensing-based multi-mode actuated sensing, one mode provides a wide frequency-band structural response from the self-sensed impedance measurement and the other mode provides a specific frequency-induced structural wavelet response from the self-sensed guided wave measurement. In this study, an experimental study on the pipeline system is carried out to verify the effectiveness and the robustness of the proposed structural health monitoring approach. Different types of structural damage are artificially inflicted on the pipeline system. To classify the multiple types of structural damage, a supervised learning-based statistical pattern recognition is implemented by composing a two-dimensional space using the damage indices extracted from the impedance and guided wave features. For more systematic damage classification, several control parameters to determine an optimal decision boundary for the supervised learning-based pattern recognition are optimized. Finally, further research issues will be discussed for real-world implementation of the proposed approach.

Multi-Level Optimization of Framed Structures Using Automatic Differentiation (자동미분을 이용한 뼈대구조의 다단계 최적설계)

  • Cho, Hyo-Nam;Chung, Jee-Sung;Min, Dae-Hong;Lee, Kwang-Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.569-579
    • /
    • 2000
  • An improved multi-level (IML) optimization algorithm using automatic differentiation (AD) of framed structures is proposed in this paper. For the efficiency of the proposed algorithm, multi-level optimization techniques using a decomposition method that separates both system-level and element-level optimizations, that utilizes and an artificial constraint deletion technique, are incorporated in the algorithm. And also to save the numerical efforts, an efficient reanalysis technique through approximated structural responses such as moments and frequencies with respect to intermediate variables is proposed in the paper. Sensitivity analysis of dynamic structural response is executed by AD that is a powerful technique for computing complex or implicit derivatives accurately and efficiently with minimal human effort. The efficiency and robustness of the IML algorithm, compared with a plain multi-level (PML) algorithm, is successfully demonstrated in the numerical examples.

  • PDF

Extending of TAM through Perceived Trust and its Application to Autonomous Driving (지각된 신뢰에 기반한 기술수용모델의 확장과 자율주행에의 적용에 관한 실증연구)

  • Lee, Kangmun;Roh, Taewoo
    • Journal of Digital Convergence
    • /
    • v.16 no.5
    • /
    • pp.115-122
    • /
    • 2018
  • The purpose of this study is to investigate the effect of technology acceptance model (TAM) on behavioral intention in order to grasp the degree of technology acceptance on autonomous driving among the various factors that consumers perceive as unmanned vehicle system becomes commercialized. In addition to the mediating effect of perceived usefulness proposed by the existing TAM, this study proposed the perceived trust (PT) and hypothesized its mediating effect on behavioral intention to use the self-driving. Path anlaysis is adopted to investigate our hypothesis using the structural equation model. The sample used for the analysis was 149 valid data among 160 responses. The effects of total effect, direct effect, and indirect effect were confirmed by hypothesis test on mediating effect. Non-parametric bootstrapping analysis was also performed to confirm the robustness. All the hypotheses were significant and we found a partial indirect effect, which implies that mediation effect of PT on behavioral intention.

Optimal Active-Control & Development of Optimization Algorithm for Reduction of Drag in Flow Problems(2) - Verification of Developed Methodologies and Optimal Active-Control of Flow for Drag Reduction (드래그 감소를 위한 유체의 최적 엑티브 제어 및 최적화 알고리즘의 개발(2) - 개발된 기법의 검증 및 드래그 감소를 위한 유체의 최적 액티브 제어)

  • Bark, Jai-Hyeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.671-680
    • /
    • 2007
  • The objective of this work is to reduce drag on a bluff body within a viscous flow by applying suction or injection of fluid along the surface of the body. In addition to minimizing drag, the optimal solution tends to reduce boundary layer separation and flow recirculation. When discretized by finite elements, the optimal control problem can be posed as a large-scale nonlinearly-constrained optimization problem. The constraints correspond to the discretized form of the Navier-Stokes equations. Unfortunately, solving such large-scale problems directly is essentially intractable. We developed several Sequential Quadratic Programming methods that are tailored to the structure of the control problem. Example problems of laminar flow around an infinite cylinder in two dimensions are solved to demonstrate the methodology. We use these optimal control techniques to study the influence of number of suction/injection holes and location of holes on the resulting optimized flow. We compare the proposed SQP methods against one another, as well as against available methods from the literature, from the point of view of efficiency and robustness. The most efficient of the proposed methods is two orders of magnitude faster than existing methods.

Numerical analysis for structure-pile-fluid-soil interaction model of fixed offshore platform

  • Raheem, Shehata E. Abdel;Aal, Elsayed M. Abdel;AbdelShafy, Aly G.A.;Mansour, Mahmoud H.;Omar, Mohamed
    • Ocean Systems Engineering
    • /
    • v.10 no.3
    • /
    • pp.243-266
    • /
    • 2020
  • In-place analysis for offshore platforms is required to make proper design for new structures and true assessment for existing structures. In addition, ensure the structural integrity of platforms components under the maximum and minimum operating loads and environmental conditions. In-place analysis was carried out to verify the robustness and capability of structural members with all appurtenances to support the applied loads in either operating condition or storm conditions. A nonlinear finite element analysis is adopted for the platform structure above the seabed and the pile-soil interaction to estimate the in-place behavior of a typical fixed offshore platform. The SACS software is utilized to calculate the natural frequencies of the model and to obtain the response of platform joints according to in-place analysis then the stresses at selected members, as well as their nodal displacements. The directions of environmental loads and water depth variations have an important effect on the results of the in-place analysis behavior. The influence of the soil-structure interaction on the response of the jacket foundation predicts is necessary to estimate the loads of the offshore platform well and real simulation of offshore foundation for the in-place analysis. The result of the study shows that the in-place response investigation is quite crucial for safe design and operation of offshore platform against the variation of environmental loads.