• Title/Summary/Keyword: Structural modeling and analysis

Search Result 2,726, Processing Time 0.03 seconds

Ultimate load behavior of horizontally curved composite plate girders

  • Shanmugam, N.E.;Basher, M.A.;Khalim, A.R.
    • Steel and Composite Structures
    • /
    • v.9 no.4
    • /
    • pp.325-348
    • /
    • 2009
  • This paper is concerned with steel-concrete composite plate girders curved in plan. At the design stage these girders are assumed sometimes to act independent of the deck slabs resting on them in order to simplify the analysis. The advantage of composite action between the steel girders and concrete deck is not utilized. Finite element modeling of such composite action in plate girders is considered in this paper. Details of the finite element modeling and the non-linear analysis of the girders are presented along with the results obtained. Tension field action in the web panels similar to those observed in the straight plate girders is also noticed in these girders. Finite element and experimental results in respect of curved steel plate girders and straight composite plate girders tested by other researchers are presented first to assess the accuracy of the modeling. Effects of parameters such as curvature, steel flange width and web panel width that affect the behavior of composite girders are then considered in the analyses. An approximate method to predict the ultimate strength of horizontally curved composite plate girders is also presented.

An Analysis of the Causal Relationships between Cognition, Attitude, and Behavior toward Appearance Management (외모관리에 대한 인지, 태도, 행동 간의 인과관계 분석)

  • Park, Kwang-Hee;Yoo, Hwa-Sook
    • Journal of the Korean Home Economics Association
    • /
    • v.50 no.1
    • /
    • pp.51-63
    • /
    • 2012
  • The purpose of this study was to investigate the effect of appearance management cognition on attitude toward appearance management and the effect of this attitude on appearance management behavior. It also examines how demographic factors affect these relationships. This study gave a questionnaire survey to adults between the ages of 40 and 50 in Seoul, Daegu, and Ulsan, South Korea. Data collected from 368 respondents were analyzed using descriptive statistics, t-test, factor analysis, and structural equation modeling. The study model was tested by structural equation modeling, the results of which revealed a positive effect of appearance management cognition on attitude toward appearance management and a positive effect of attitude toward appearance management on appearance management behavior. The results of t-testing showed that there were significant differences in cognition, attitude, and behavior toward appearance management by gender, age, educational level, and income.

Dynamic Finite Element Modeling and Structural Vibration Analysis of a Gyrocopter (자이로콥터의 동적 유한요소모델링 및 구조진동해석)

  • Jung, Se-Un;Yang, Yong-Jun;Kim, Hyun-Jung;Je, Sang-Eon;Cho, Tae-Hwan;Kim, Dong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.813-820
    • /
    • 2005
  • In this study, finite element modeling and structural vibration analyses of a gyrocopter have been conducted considering dynamic hub-loads due to rotating blades. For this research, 3D CATIA models for most mechanical parts are exactly prepared and assembled into the final aircraft configuration. Then the dynamic finite element model including several non-structural parts are constructed based on the exact 3D CAD data. Computational structural dynamics technique based on finite element method is applied using both MSC/NASTRAN and developed in-house code which can largely reduce the pre and postprocessing time of general transient dynamic analyses. Modal based transient and frequency response analyses are used to efficiently investigate vibration characteristics. The results include natural frequency comparison for different fuel and pilot conditions, fundamental natural mode shapes, frequency responses and transient acceleration responses of the present gyrocopter model.

  • PDF

Linear Modeling of Viscoelastic Dampers Considering Nonlinear Dynamic Behavior (점탄성 감쇠기의 비선형거동을 고려한 선형모델 해석)

  • Kim, Jin-Koo;Kwon, Young-Jip;Min, Kyung-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.171-177
    • /
    • 2002
  • The viscoelastic dampers are considered to be one of the most efficient means of upgrading existing structures against seismic loads. Generally in the dynamic analysis of a structure with added viscoelastic dampers the internal forces of the dampers are represented by constants that are linearly proportional to displacement and velocity. The purpose of this study is to verify the validity of the linear Kelvin model by comparing the results from the linear analysis with those obtained from the more rigorous nonlinear model such as fractional derivative model. According to the results the structural responses of 1-DOF structure obtained using the linear model are very close to those obtained from nonlinear model. However for multi-D0F structure the difference between the results from both models is enlarged as a results of the assumptions associated with the linear modeling of the viscoelastic dampers.

Development of Integrated System for Structural Analysis & Design of Foundation for Vibrating Machines (전동기계기초 전용 구조해석 및 설계 통합 시스템의 개발)

  • 이동근;김현수;손권익;임인묵
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.455-462
    • /
    • 1998
  • Analysis and design of vibrating machine foundations subjected to dynamic loads is a very complex problem. Thus it is difficult to set up an accurate analytical modeling. Generally, the design of foundations for vibrating machines has been performed by the equivalent static analysis which is generally based on engineer's experience and various assumptions The purpose of this study is to develop an integrated system which enables structural engineers to produce results of high quality within a short time in works related to structural analysis and design of foundation for vibrating machines. As the result of this study, level-up of application software is expected as well as improvement of quality in structural engineering and reduction of engineers' effort.

  • PDF

A Study on the Structural Analysis & Design Optimization Using Automation System Integrated with CAD/CAE (통합된 CAD/CAE 자동화 System을 이용한 구조 강도 해석 및 설계 최적화에 관한 연구)

  • Won June-Ho;Kim Jong-Soo;choi Joo-Ho;Yoon Jong-Min
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.55-62
    • /
    • 2005
  • In this paper, a CAB/CAE integrated optimal design system is developed, in which design and analysis process is automated using CAD/CAE softwares, for a complicated model for which parametric modeling provided by CAD software is not possible. CAD modeling process is automated by using UG/OPEN API function and UG/Knowledge Fusion provided by Unigraphics. The generated model is transferred to the analysis code ANSYS in parasolid format. Visual DOC software is used for optimization. The system is developed for PLS(Plasma Lighting System), which is a next generation illumination system that is used to illuminate stadium or outdoor advertizing panel. The PLS system consists of more then 20 components, which requires a lot of human efforts in modeling and analysis. The analysis for PLS includes static load, wind load and impact load analysis. As a result of analysis, it is found that the most critical component is a tilt assembly, which links lower & upper body assembly. For more reliable analysis, experiment is conducted using MTS and compared with the Finite element analysis result. The objective in the optimization is to minimize the material volume under allowable stresses. The design variables are three parameters in the tilt assembly that are chosen to be the most sensitive in stress values of twelve parameters. Gradient based method and RSM(Response Surface Method) are used for the algorithm and the results are compared. As a result of optimization, the maximum stress is reduced by 57%.

  • PDF

Predictions on the Internal Loads and Structural Deflection in a Full-scale Experimental Bearingless Rotor

  • Eun, WongJong;Ryu, HanYeol;Shin, SangJoon;Kee, YoungJung;Kim, Deog-Kwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.1
    • /
    • pp.110-122
    • /
    • 2015
  • In this paper, the unsteady aerodynamics and blade structural dynamics of an experimental bearingless rotor were analyzed. Due to the multiple load path and nonlinear behavior of a bearingless rotor, sophisticated structural modeling and structural-aerodynamic coupled analysis is required. To predict the internal load and deformation of an experimental bearingless rotor, trim analysis was implemented. The results showed good agreement when compared with those predicted by CAMRAD II the rotorcraft comprehensive analysis. It is possible to extend the present structural-aerodynamic combined analysis to further advanced configurations of the bearingless rotor in the future.

Empirical Analysis on the Influence of Service Quality of Leisure Food E-Commerce in China on Consumer Satisfaction Degree (중국 레저푸드 전자상거래의 서비스 품질이 소비자 만족도에 미치는 영향에 관한 실증분석)

  • Liu, Zi-Yang;Meng, Jia
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.407-408
    • /
    • 2019
  • This thesis determines the research framework and scale design of leisure food E-Commerce consumer satisfaction degree by referring to previous theoretical model of customer satisfaction degree, the universal satisfaction evaluation index system, and the characteristics of leisure food E-Commerce in China. In this research, consumers who have bought leisure food online are taken as the research object, data are collected by questionnaires, and exploratory factor method is used to screen valid sample data. Through the Empirical Analysis which includes Descriptive Statistical Analysis, Reliability and Validity Analysis and Structural Equation Modeling, it is concluded that website design, logistics delivery service, commodity quality, and after-sales service are the main service quality on which the Leisure food E-Commerce enterprises should take focus. The service quality has significant positive influences on satisfaction degree. On the other hand consumer satisfaction has a significant positive influence on customer loyalty, which will create more earnings for the Leisure food E-Commerce enterprises.

  • PDF

Development of 3D CAD/CAE Interface in Initial Structural Design Phase of Shipbuilding (조선 기본구조설계 단계에서의 3D CAD/CAE 인터페이스 개발)

  • Son, Myeong-Jo;Lee, Jeong-Youl;Park, Ho Gyun;Kim, Jong-Oh;Woo, Jengjae;Lee, JoungHyun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.2
    • /
    • pp.186-195
    • /
    • 2016
  • The finite element modeling of a ship for hull structural analysis on the basis of new harmonized common structural rules (CSR-H) is to be extended to the cargo holds in fore and after body of a ship. Unlike the parallel middle-body where the external and internal features of hull are equal along to the longitudinal direction of a ship, in fore and after body, the external and internal features of hull vary linearly or even irregularly in forms of a surface or a curve along to the longitudinal direction of a ship. Thus, it needs lots of design man-hours for the modeling for structural analysis. In order to save man-hours in initial structural design phase of a ship, the specified 3D CAD system has been adopted in shipbuilding industry. Through the interface between CAD and CAE (rule scantling and direct strength assessment), design man-hour in initial design phase can be saved even under the environment of CSR-H.

An XPDL-Based Workflow Control-Structure and Data-Sequence Analyzer

  • Kim, Kwanghoon Pio
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1702-1721
    • /
    • 2019
  • A workflow process (or business process) management system helps to define, execute, monitor and manage workflow models deployed on a workflow-supported enterprise, and the system is compartmentalized into a modeling subsystem and an enacting subsystem, in general. The modeling subsystem's functionality is to discover and analyze workflow models via a theoretical modeling methodology like ICN, to graphically define them via a graphical representation notation like BPMN, and to systematically deploy those graphically defined models onto the enacting subsystem by transforming into their textual models represented by a standardized workflow process definition language like XPDL. Before deploying those defined workflow models, it is very important to inspect its syntactical correctness as well as its structural properness to minimize the loss of effectiveness and the depreciation of efficiency in managing the corresponding workflow models. In this paper, we are particularly interested in verifying very large-scale and massively parallel workflow models, and so we need a sophisticated analyzer to automatically analyze those specialized and complex styles of workflow models. One of the sophisticated analyzers devised in this paper is able to analyze not only the structural complexity but also the data-sequence complexity, especially. The structural complexity is based upon combinational usages of those control-structure constructs such as subprocesses, exclusive-OR, parallel-AND and iterative-LOOP primitives with preserving matched pairing and proper nesting properties, whereas the data-sequence complexity is based upon combinational usages of those relevant data repositories such as data definition sequences and data use sequences. Through the devised and implemented analyzer in this paper, we are able eventually to achieve the systematic verifications of the syntactical correctness as well as the effective validation of the structural properness on those complicate and large-scale styles of workflow models. As an experimental study, we apply the implemented analyzer to an exemplary large-scale and massively parallel workflow process model, the Large Bank Transaction Workflow Process Model, and show the structural complexity analysis results via a series of operational screens captured from the implemented analyzer.