• Title/Summary/Keyword: Structural equations model

Search Result 744, Processing Time 0.03 seconds

Seismic analysis of transmission towers under various line configurations

  • Lei, Y.H.;Chien, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.3
    • /
    • pp.241-264
    • /
    • 2009
  • In this paper, the dynamic behavior for a group of transmission towers linked together through electrical wires and subjected to a strong ground motion will be investigated in detail. In performing the seismic analysis, the wires and the towers concerned are modeled, respectively, by using the efficient cable elements and the 3-D beam elements both considering geometric nonlinearities. In addition, to enhance the reliability and applicability of analytical outcome, a sophisticated soil-structure interaction model will be utilized in analyses. The strength capacities and the fracture occurrences for the main members of the tower are examined with the employment of the appropriate strength interaction equations. It is expected that by aid of this investigation, those who are engaged in code constitution or in practical designing of transmission towers may gain a better insight into the roles played by the interaction force between towers and wires and by the configurations of transmission lines under strong earthquake.

The effect of two temperatures on a FG nanobeam induced by a sinusoidal pulse heating

  • Zenkour, Ashraf M.;Abouelregal, Ahmed E.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.2
    • /
    • pp.199-214
    • /
    • 2014
  • The present investigation is concerned with the effect of two temperatures on functionally graded (FG) nanobeams subjected to sinusoidal pulse heating sources. Material properties of the nanobeam are assumed to be graded in the thickness direction according to a novel exponential distribution law in terms of the volume fractions of the metal and ceramic constituents. The upper surface of the FG nanobeam is fully ceramic whereas the lower surface is fully metal. The generalized two-temperature nonlocal theory of thermoelasticity in the context of Lord and Shulman's (LS) model is used to solve this problem. The governing equations are solved in the Laplace transformation domain. The inversion of the Laplace transformation is computed numerically using a method based on Fourier series expansion technique. Some comparisons have been shown to estimate the effects of the nonlocal parameter, the temperature discrepancy and the pulse width of the sinusoidal pulse. Additional results across the thickness of the nanobeam are presented graphically.

Free vibration analysis of continuous bridge under the vehicles

  • Tan, Guojin;Wang, Wensheng;Jiao, Yubo;Wei, Zhigang
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.335-345
    • /
    • 2017
  • Free vibration analysis for continuous bridge under any number of vehicles is conducted in this paper. Calculation strategy for natural frequency and mode shape is proposed based on Euler-Bernoulli beam theory and numerical assembly method. Firstly, a half-car planar model is adopted; equations of motion and displacement functions for bridge and vehicle are established, respectively. Secondly, the undermined coefficient matrices for wheels, vehicles, intermediate support, left-end support and right-end support are derived. Then, the numerical assembly technique for conventional finite element method is adopted to construct the overall matrix of coefficients for whole system. Finally, natural frequencies and corresponding mode shapes are determined based on iterative method and overall matrix solution. Numerical simulation is presented to verify the effectiveness of the proposed method. The results reveal that the solutions of present method are exact ones. Natural frequencies and associate modal shapes of continuous bridge under different conditions of vehicles are investigated. The influences of vehicle parameters on natural frequencies are also demonstrated.

Forced Vibration Analysis of the Hard Disk Drive Spindle Systems (하드디스크 드라이브 회전축계의 강제진동해석)

  • Lim, Seung-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1601-1608
    • /
    • 2000
  • This paper is concerned with the forced flexural vibration analysis of hard disk drive (HDD) spindle systems with multiple thin disks, supported by two ball bearings based on the finite element model. This is the extension of the previous work which analytically modeled every system component taking into account its structural flexibility and also the centrifugal stiffening effect especially for the disks. Among the end results, the forced time response is expectedly useful for the vibration control of the spindle itself or the position servo control of the magnetic head. On the other hand, the steady state responses such as the frequency response function and the unbalance response are useful for system identification. Futhermore, through a coordinate transformation the equations of motion is also derived with respect to the inertial frame for convenient analyses of certain classes.

  • PDF

Analysis of RC walls with a mixed formulation frame finite element

  • Saritas, Afsin;Filippou, Filip C.
    • Computers and Concrete
    • /
    • v.12 no.4
    • /
    • pp.519-536
    • /
    • 2013
  • This paper presents a mixed formulation frame element with the assumptions of the Timoshenko shear beam theory for displacement field and that accounts for interaction between shear and normal stress at material level. Nonlinear response of the element is obtained by integration of section response, which in turn is obtained by integration of material response. Satisfaction of transverse equilibrium equations at section includes the interaction between concrete and transverse reinforcing steel. A 3d plastic damage model is implemented to describe the hysteretic behavior of concrete. Comparisons with available experimental data on RC structural walls confirm the accuracy of proposed method.

Post-buckling of cylindrical shells with spiral stiffeners under elastic foundation

  • Shaterzadeh, Alireza;Foroutan, Kamran
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.615-631
    • /
    • 2016
  • In this paper, an analytical method for the Post-buckling response of cylindrical shells with spiral stiffeners surrounded by an elastic medium subjected to external pressure is presented. The proposed model is based on two parameters elastic foundation Winkler and Pasternak. The material properties of the shell and stiffeners are assumed to be continuously graded in the thickness direction. According to the Von Karman nonlinear equations and the classical plate theory of shells, strain-displacement relations are obtained. The smeared stiffeners technique and Galerkin method is used to solve the nonlinear problem. To valid the formulations, comparisons are made with the available solutions for nonlinear static buckling of stiffened homogeneous and un-stiffened FGM cylindrical shells. The obtained results show the elastic foundation Winkler on the response of buckling is more effective than the elastic foundation Pasternak. Also the ceramic shells buckling strength higher than the metal shells and minimum critical buckling load is occurred, when both of the stiffeners have angle of thirty degrees.

Single variable shear deformation model for bending analysis of thick beams

  • Abdelbari, Salima;Amar, Lemya Hanifi Hachemi;Kaci, Abdelhakim;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.291-300
    • /
    • 2018
  • In this work, a new trigonometry theory of shear deformation is developed for the static analysis of thick isotropic beams. The number of variables used in this theory is identical to that required in the theory of Euler-Bernoulli, sine function is used in the displacement field in terms of the coordinates of the thickness to represent the effects of shear deformation. The advantage of this theory is that shear stresses can be obtained directly from the relationships constitute, while respecting the boundary conditions at the free surface level of the beam. Therefore, this theory avoids the use of shear correction coefficients. The differential equilibrium equations are obtained using the principle of virtual works. A thick isotropic beam is considered, whose numerical study to show the effectiveness of this theory.

Effect of length scale parameters on transversely isotropic thermoelastic medium using new modified couple stress theory

  • Lata, Parveen;Kaur, Harpreet
    • Structural Engineering and Mechanics
    • /
    • v.76 no.1
    • /
    • pp.17-26
    • /
    • 2020
  • The objective of this paper is to study the deformation in transversely isotropic thermoelastic solid using new modified couple stress theory subjected to ramp-type thermal source and without energy dissipation. This theory contains three material length scale parameters which can determine the size effects. The couple stress constitutive relationships are introduced for transversely isotropic thermoelastic solid, in which the curvature (rotation gradient) tensor is asymmetric and the couple stress moment tensor is symmetric. Laplace and Fourier transform technique is applied to obtain the solutions of the governing equations. The displacement components, stress components, temperature change and couple stress are obtained in the transformed domain. A numerical inversion technique has been used to obtain the solutions in the physical domain. The effects of length scale parameters are depicted graphically on the resulted quantities. Numerical results show that the proposed model can capture the scale effects of microstructures.

Study on free vibration characteristics of rotating composite box beams (회전하는 복합재료 상자형 보의 진동 특성에 관한 연구)

  • Lim, In-Gyu;Choi, Ji-Hoon;Jeon, Seong-Min;Lee, In;Han, Jae-Hung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.61-64
    • /
    • 2003
  • The finite element method based on the refined beam theory is applied to the vibration problem of rotation composite box beams. The present beam model includes a number of non-classical structural effects such as transverse shear, warping deformations, geometric non-linearities. The nonlinear finite element equations of motion are obtained from Hamilton's principle. Vibration characteristics versus various parameters such as ply angle, collective pitch angle, pretwist and precone are investigated for rotation box ben and relevant conclusions are outlined.

  • PDF

System Analysis and Design for a Vibration Converted Power Generator using Piezo Materials (압전 재료를 이용한 진동에너지 변환 전력발생 시스템 해석 및 설계)

  • 금명훈;이승엽;고병식;김경호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.1059-1066
    • /
    • 2003
  • A power generation system are proposed to convert ambient mechanical vibration into electrical energy using cantilever-type piezoelectric materials. The vibration-based power device can be used for self-powered systems without batteries. This paper presents the theoretical analysis for the coupled equations of piezoelectric and structural motions and investigates the dynamic characteristics of the self-power system using transfer function method. The theoretical model is verified by the finite element analysis of the resonance frequency, the dynamic response of the structure and the sensor sensibility. Experimental results measured using a prototype system agrees with the theoretical predictions. The system is shown to produce 2.53㎼ in average. Finally, we perform the optimal design for system variables to maximize output power.

  • PDF