• Title/Summary/Keyword: Structural equations model

Search Result 741, Processing Time 0.027 seconds

Numerical Model to Evaluate Resistance against Direct Shear Failure and Bending Failure of Reinforced Concrete Members Subjected to Blast Loading (폭발하중을 받는 철근콘크리트 부재의 직접전단 파괴 및 휨 파괴 저항성능 평가를 위한 수치해석 모델 개발)

  • Ju, Seok Jun;Kwak, Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.393-401
    • /
    • 2021
  • In this paper, we proposed a numerical model based on moment-curvature, to evaluate the resistance of reinforced concrete (RC) members subjected to blast loading. To consider the direct shear failure mode, we introduced a dimensionless spring element based on the empirical direct shear stress-slip relation. Based on the dynamic increase factor equations for materials, new dynamic increase factor equations were constructed in terms of the curvature rate for the section which could be directly applied to the moment-curvature relation. Additionally, equivalent bending stiffness was introduced in the plastic hinge region to consider the effect of bond-slip. To verify the validity of the proposed model, a comparative study was conducted against the experimental results, and the superiority of this numerical model was confirmed through comparison with the analytical results of the single-degree of freedom model. Pressure-impulse (P-I) diagrams were produced to evaluate the resistance of members against bending failure and direct shear failure, and additional parametric studies were conducted.

A GN-based modified model for size-dependent coupled thermoelasticity analysis in nano scale, considering nonlocality in heat conduction and elasticity: An analytical solution for a nano beam with energy dissipation

  • Hosseini, Seyed Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.287-302
    • /
    • 2020
  • This investigation deals with a size-dependent coupled thermoelasticity analysis based on Green-Naghdi (GN) theory in nano scale using a new modified nonlocal model of heat conduction, which is based on the GN theory and nonlocal Eringen theory of elasticity. In the analysis based on the proposed model, the nonlocality is taken into account in both heat conduction and elasticity. The governing equations including the equations of motion and the energy balance equation are derived using the proposed model in a nano beam resonator. An analytical solution is proposed for the problem using the Laplace transform technique and Talbot technique for inversion to time domain. It is assumed that the nano beam is subjected to sinusoidal thermal shock loading, which is applied on the one of beam ends. The transient behaviors of fields' quantities such as lateral deflection and temperature are studied in detail. Also, the effects of small scale parameter on the dynamic behaviors of lateral deflection and temperature are obtained and assessed for the problem. The proposed GN-based model, analytical solution and data are verified and also compared with reported data obtained from GN coupled thermoelasticity analysis without considering the nonlocality in heat conduction in a nano beam.

Shape control of cable structures considering concurrent/sequence control

  • Shon, Sudeok;Kwan, Alan S.;Lee, Seungjae
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.919-935
    • /
    • 2014
  • In this study, the control of the shape of pre-stressed cable structures and the effective control element were examined. The process of deriving the displacement control equations using the force method was explained, and the concurrent control scheme (CCS) and the sequence control scheme (SCS) were proposed. To explain the control scheme process, the quadrilateral cable net model was adopted and classified into a regular model and an irregular model for the analysis of the control results. In the control analysis of the regular model, the CCS and SCS analysis results proved reliable. For the SCS, the errors occur in the control stage and varied according to the control sequence. In the control analysis of the irregular model, the CCS analysis result also proved relatively reliable, and the SCS analysis result with the correction of errors in each stage was found nearly consistent with the target shape after the control. Finally, to investigate an effective control element, the Geiger cable dome was adopted. A set of non-redundant elements was evaluated in the reduced row echelon form of a coefficient matrix of control equations. Important elements for shape control were also evaluated using overlapping elements in the element sets, which were selected based on cable adjustments.

Marginal Propensity to Consume with Economic Shocks - FIML Markov-Switching Model Analysis (경제충격 시기의 한계소비성향 분석 - FIML 마코프-스위칭 모형 이용)

  • Yoon, Jae-Ho;Lee, Joo-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6565-6575
    • /
    • 2014
  • Hamilton's Markov-switching model [5] was extended to the simultaneous equations model. A framework for an instrumental variable interpretation of full information maximum likelihood (FIML) by Hausman [4] can be used to deal with the problem of simultaneous equations based on the Hamilton filter [5]. A comparison of the proposed FIML Markov-switching model with the LIML Markov-switching models [1,2,3] revealed the LIML Markov-switching models to be a special case of the proposed FIML Markov-switching model, where all but the first equation were just identified. Moreover, the proposed Markov-switching model is a general form in simultaneous equations and covers a broad class of models that could not be handled previously. Excess sensitivity of marginal propensity to consume with big shocks, such as housing bubble bursts in 2008, can be determined by applying the proposed model to Campbell and Mankiw's consumption function [6], and allowing for the possibility of structural breaks in the sensitivity of consumption growth to income growth.

Stiffness model for "column face in bending" component in tensile zone of bolted joints to SHS/RHS column

  • Ye, Dongchen;Ke, Ke;Chen, Yiyi
    • Steel and Composite Structures
    • /
    • v.38 no.6
    • /
    • pp.637-656
    • /
    • 2021
  • The component-based method is widely used to analyze the initial stiffness of joint in steel structures. In this study, an analytical component model for determining the column face stiffness of square or rectangular hollow section (SHS/RHS) subjected to tension was established, focusing on endplate connections. Equations for calculating the stiffness of the SHS/RHS column face in bending were derived through regression analysis using numerical results obtained from a finite element model database. Because the presence of bolt holes decreased the bending stiffness of the column face, this effect was calculated using a novel plate-spring-based model through numerical analysis. The developed component model was first applied to predict the bending stiffness of the SHS column face determined through tests. Furthermore, this model was incorporated into the component-based method with other effective components, e.g., bolts under tension, to determine the tensile stiffness of the T-stub connections, which connects the SHS column, and the initial rotational stiffness of the joints. A comparison between the model predictions, test data, and numerical results confirms that the proposed model shows satisfactory accuracy in evaluating the bending stiffness of SHS column faces.

Effective Strengths of Concrete Struts in Strut-Tie Models of Reinforced Concrete Corbels (철근콘크리트 코벨 스트럿-타이 모델의 스트럿 유효강도)

  • Chae, Hyun Soo;Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1081-1094
    • /
    • 2014
  • The strut-tie model approach has proven to be effective in the ultimate analysis and design of structural concrete with disturbed regions. For the reliable analysis and safe design of the structural concrete, however, the effective strengths of concrete struts must be determined accurately. In this study, the equations of the effective strengths of concrete struts, which are useful for the three types of determinate and indeterminate strut-tie models of reinforced concrete corbels, were proposed. The effects of shear span-to-effective depth ratio, the vertical-to-horizontal force ratio, and flexural and horizontal shear reinforcement ratios were reflected in the development of the proposed equations. To examine the appropriateness of the proposed and existing equations, the ultimate strengths of 243 reinforced concrete corbels tested to failure were evaluated by using the three types of corbel strut-tie models.

Using the pendulum column as an isolator by reducing the gravity effect

  • Abdallah Azizi;Majid Barghian
    • Earthquakes and Structures
    • /
    • v.25 no.4
    • /
    • pp.297-305
    • /
    • 2023
  • The conventional method of structural seismic design was based on increasing structural capacity, which usually didn't reduce earthquake seismic effects. By changing the philosophy of structure design, technologies such as passive seismic control have been used in structures. So far, a large number of seismic isolation systems have been introduced to dissipate earthquake energy that is applied to a structure. These systems act against earthquakes rather than increasing the strength and capacity of the structure. In the present paper, a suspended column called a "pendulum column" is investigated, and a new idea has been considered to improve the performance of the pendulum column isolator by changing the gravity effect by adding a spring under the isolator system. The behavior of the studied isolator system has been researched. Then the isolator system was investigated under different earthquakes and compared with a common pendulum column isolator. The results show that changing the gravity effect has an effective role in the response of the system by reducing the system stiffness. Equations for the system showed that even in a special state, complete isolation is possible. Finally, the tested model verified the theory.

Structural design of steel fibre reinforced concrete in-filled steel circular columns

  • Eltobgy, Hanan H.
    • Steel and Composite Structures
    • /
    • v.14 no.3
    • /
    • pp.267-282
    • /
    • 2013
  • This paper presents the behavior and design of axially loaded normal and steel fiber reinforced concrete in-filled steel tube (SFRCFT) columns, to examine the contribution of steel fibers on the compressive strength of the composite columns. Non-linear finite element analysis model (FEA) using ANSYS software has been developed and used in the analysis. The confinement effect provided by the steel tube is considered in the analysis. Comparisons of the analytical model results, along with other available experimental outputs from literature have been done to verify the structural model. The compressive strength and stiffness of SFRC composite columns were discussed, and the interpretation of the FEA model results has indicated that, the use of SFRC as infill material has a considerable effect on the strength and stiffness of the composite column. The analytical model results were compared with the existing design methods of composite columns - (EC4, AISC/LRFD and the Egyptian code of Practice for Steel Construction, ECPSC/LRFD). The comparison indicated that, the results of the FEA model were evaluated to an acceptable limit of accuracy. The code design equations were modified to introduce the steel fiber effect and compared with the results of the FEA model for verification.

A Method for Assessing Structural Safety of Ground-Support Systems in Underground Rock Cavern (지하 암반 공동내 지보시스템의 구조적 안전성 평가 방법)

  • 장승필;서정문
    • The Journal of Engineering Geology
    • /
    • v.6 no.1
    • /
    • pp.23-31
    • /
    • 1996
  • A stress redistribution process in ground support system is mpdeled taking into consideration of load transfer mechanism of unbalanced load within shotcrete in a rock cavern constructed by NATM. The corresponding analysis model for ground support system is proposed and the elastic behavior of the shotcrete is studied. The effect on the support system due to variation of several design parameters is analysed with the proposed model. The suggested model yields considerably reduced maximum compressive stresses in shotcrete. Both the pressure coefficient in horizontal direction and the elastic modulus of rock mass govern overall responses, whereas the variation of the properties in support system shows a little difference in system responses. Interaction equations for evaluating safety factors for structural members are suggested. The result of this study can be used in the structural safety assessment of underground structures.

  • PDF

Structural response of concrete gravity dams under blast loads

  • Sevim, Baris;Toy, Ahmet Tugrul
    • Advances in concrete construction
    • /
    • v.9 no.5
    • /
    • pp.503-510
    • /
    • 2020
  • Concrete dams are important structures due to retaining amount of water on their reservoir. So such kind of structures have to be designed against static and dynamic loads. Especially considering on critical importance against blasting threats and environmental safety, dams have to be examined according to the blast loads. This paper aims to investigate structural response of concrete gravity dams under blast loads. For the purpose Sarıyar Concrete Gravity Dam in Turkey is selected for numerical application with its 85 m of reservoir height (H), 255 m of reservoir length (3H), 72 m of bottom and 7 m of top widths. In the study, firstly 3D finite element model of the dam is constituted using ANSYS Workbench software considering dam-reservoir-foundation interaction and a hydrostatic analysis is performed without blast loads. Then, nearly 13 tons TNT explosive are considered 20 m away from downstream of the dam and this is modeled using ANSYS AUTODYN software. After that explicit analyses are performed through 40 milliseconds. Lastly peak pressures obtained from analyses are compared to empirical equations in the literature and UFC 3-340-02 standard which provide unified facilities criteria for structures to resist the effects of accidental explosions. Also analyses' results such as displacements, stresses and strains obtained from both hydrostatic and blasting analysis models are compared to each other. It is highlighted from the study that blasting analysis model has more effective than the only hydrostatic analysis model. So it is highlighted from the study that the design of dams should be included the blast loads.