• Title/Summary/Keyword: Structural energy

Search Result 4,457, Processing Time 0.039 seconds

Nature of the Interfacial Regions in the Antiferromagnetically-coupled Fe/Si Multilayered Films

  • Moon, J.C.;Y.V. Kudryavtsev;J.Y.Rhee;Kim, K.W.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.174-174
    • /
    • 2000
  • A strong antiferromagnetic coupling in Fe/Si multilayered films (MLF) had been recently discovered and much consideration has been given to whether the coupling in the Fe/Si MLF system has the same origin as the metal/metal MLF. Nevertheless, the nature of the interfacial ron silicide is still controversial. On one hand, a metal/ semiconductor structure was suggested with a narrow band-gap semiconducting $\varepsilon$-FeSi spacer that mediates the coupling. However, some features show that the nature of coupling can be well understood in terms of the conventional metal/metal multilayered system. It is well known that both magneto-optical (MO) and optical properties of a metal depend strongly on their electronic structure that is also correlated with the atomic and chemical ordering. In this study, the nature of the interfacial regions is the Fe/Si multilayers has been investigated by the experimental and computer-simulated MO and optical spectroscopies. The Fe/Si MLF were prepared by rf-sputtering onto glass substrates at room temperature with the number of repetition N=50. The thickness of Fe sublayer was fixed at 3.0nm while the Si sublayer thickness was varied from 1.0 to 2.0 nm. The topmost layer of all the Fe/Si MLF is Fe. In order to carry out the computer simulations, the information on the MO and optical parameters of the materials that may constitute a real multilayered structure should be known in advance. For this purpose, we also prepared Fe, Si, FeSi2 and FeSi samples. The structural characterization of Fe/Si MLF was performed by low- and high -angle x-ray diffraction with a Cu-K$\alpha$ radiation and by transmission electron microscopy. A bulk $\varepsilon$-FeSi was also investigated. The MO and optical properties were measured at room temperature in the 1.0-4.7 eV energy range. The theoretical simulations of MO and optical properties for the Fe/Si MLF were performed by solving exactly a multireflection problem using the scattering matrix approach assuming various stoichiometries of a nonmagnetic spacer separating the antiferromagnetically coupled Fe layers. The simulated spectra of a model structure of FeSi2 or $\varepsilon$-FeSi as the spacer turned out to fail in explaining the experimental spectra of the Fe/Si MLF in both intensity and shape. Thus, the decisive disagreement between experimental and simulated MO and optical properties ruled out the hypothesis of FeSi2 and $\varepsilon$-FeSi as the nonmagnetic spacer. By supposing the spontaneous formation of a metallic ζ-FeSi, a reasonable agreement between experimental and simulated MO and optical spectra was obtained.

  • PDF

Hydration properties of OPC with Synthesized Calcium Alumino Ferrite(CAF) (합성 Calcium Alumino Ferrite(CAF) 치환량에 따른 시멘트 수화 특성)

  • Woong-Geol Lee;Myong-Shin Song
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.9-15
    • /
    • 2023
  • The cement is a typical CO2 emission industry. Manufacturing process improvements and increased use of alternative materials are needed to reduce energy consumption and CO2 emissions. This study confirmed the basic characteristics of cement hydration by sintering CAF at low temperature as a CO2 adsorbent material. For the hydration product of the synthetic CAF, crystal phase analysis, porosity, and structural images were confirmed, and the compressive strength was measured. The replacement rate of SCAF was 10, 20, and 100 %, and the compressive strength tended to decrease as the replacement rate increased. In addition, when the SCAF substitution rate is 100 %, the hydration products of the early age are calcium aluminum oxide hydrate (Ca3Al2O6 x H2O) and calcium iron hydroxide (Ca3Fe(OH)12), and at substitution rates of 10 and 20 %, CAF compounds other than general cement hydrates brownmillerite was observed. As for the porosity, the pore size increased and the porosity increased with the increase of the replacement ratio. As a result of this study, CAF manufactured by low-temperature sintering seems to be difficult to use alone and general curing for utilization as a CO2 adsorbing material.

Effects of fermentation on protein profile of coffee by-products and its relationship with internal protein structure measured by vibrational spectroscopy

  • Samadi;Xin Feng;Luciana Prates;Siti Wajizah;Zulfahrizal;Agus Arip Munawar;Peiqiang Yu
    • Animal Bioscience
    • /
    • v.36 no.8
    • /
    • pp.1190-1198
    • /
    • 2023
  • Objective: To our knowledge, there are few studies on the correlation between internal structure of fermented products and nutrient delivery from by-products from coffee processing in the ruminant system. The objective of this project was to use advanced mid-infrared vibrational spectroscopic technique (ATR-FT/IR) to reveal interactive correlation between protein internal structure and ruminant-relevant protein and energy metabolic profiles of by-products from coffee processing affected by added-microorganism fermentation duration. Methods: The by-products from coffee processing were fermented using commercial fermentation product, called Saus Burger Pakan, consisting of various microorganisms: cellulolytic, lactic acid, amylolytic, proteolytic, and xylanolytic microbes, for 0, 7, 14, 21, and 28 days. Protein chemical profiles, Cornell Net Carbohydrate and Protein System crude protein and CHO subfractions, and ruminal degradation and intestinal digestion of protein were evaluated. The attenuated total reflectance-Ft/IR (ATR-FTIR) spectroscopy was used to study protein structural features of spectra that were affected by added microorganism fermentation duration. The molecular spectral analyses were carried using OMNIC software. Molecular spectral analysis parameters in fermented and non-fermented by-products from coffee processing included: Amide I area (AIA), Amide II (AIIA) area, Amide I heigh (AIH), Amide II height (AIIH), α-helix height (αH), β-sheet height (βH), AIA to AIIA ratio, AIH to AIIH ratio, and αH to βH ratio. The relationship between protein structure spectral profiles of by-products from coffee processing and protein related metabolic features in ruminant were also investigated. Results: Fermentation decreased rumen degradable protein and increased rumen undegradable protein of by-products from coffee processing (p<0.05), indicating more protein entering from rumen to the small intestine for animal use. The fermentation duration significantly impacted (p<0.05) protein structure spectral features. Fermentation tended to increase (p<0.10) AIA and AIH as well as β-sheet height which all are significantly related to the protein level. Conclusion: Protein structure spectral profiles of by-product form coffee processing could be utilized as potential evaluators to estimate protein related chemical profile and protein metabolic characteristics in ruminant system.

Hybrid Structural Health Monitoring of Steel Plate-Girder Bridges using Acceleration-Impedance Features (가속도-임피던스 특성을 이용한 강판형교의 하이브리드 구조건전성 모니터링)

  • Hong, Dong-Soo;Do, Han-Sung;Na, Won-Bae;Kim, Jeong-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.61-73
    • /
    • 2009
  • In this paper, hybrid health monitoring techniques using acceleration-impedance features are newly proposed to detect two damage-type in steel plate-girder bridges, which are girder's stiffness-loss and support perturbation. The hybrid techniques mainly consists of three sequential phases: 1) to alarm the occurrence of damage in global manner, 2) to classify the alarmed damage into subsystems of the structure, and 3) to estimate the classified damage in detail using methods suitable for the subsystems. In the first phase, the global occurrence of damage is alarmed by monitoring changes in acceleration features. In the second phase, the alarmed damage is classified into subsystems by recognizing patterns of impedance features. In the final phase, the location and the extent of damage are estimated by using modal strain energy-based damage index method and root mean square deviation (RMSD) method. The feasibility of the proposed hybrid technique is evaluated on a laboratory-scaled steel plate-girder bridge model for which hybrid acceleration-impedance signatures were measured for several damage scenarios. Also, the effect of temperature on the accuracy of the impedance-based damage monitoring results are experimentally examined from combined scenarios of support damage cases and temperature changes.

Evaluation of Bonding Performance of Hybrid Materials According to Laser and Plasma Surface Treatment (레이저 및 플라즈마 표면처리에 따른 이종소재 접합특성평가)

  • Minha Shin;Eun Sung Kim;Seong-Jong Kim
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.441-447
    • /
    • 2023
  • Recently, as demand for high-strength, lightweight materials has increased, there has been great interest in joining with metals. In the case of mechanical bonding, such as bolting and riveting, chemical bonding using adhesives is attracting attention as stress concentration, cracks, and peeling occur. In this paper, surface treatment was performed to improve the adhesive strength, and the change in adhesive strength was analyzed. For the adhesive strength test were conducted with Carbon Fiber Reinforced Plastic(CFRP), CR340(Steel), and Al6061(Aluminum), and laser and plasma surface treatment were used. After plasma surface treatment, the adhesive strength improved by 7.3% and 39.2% in CFRP-CR340 and CFRP-Al6061, respectively. CR340-Al6061 was improved by 56.2% in laser surface treatment. Surface free energy(SFE) was measured by contact angle after plasma treatment, and it is thought that the adhesion strength was improved by minimizing damage through a chemical reaction mechanism. For laser surface treatment, it is thought that creates a rough bonding surface and improves adhesive strength due to the mechanical interlocking effect. Therefore, surface treatment is effect to improve adhesive strength, and based on this paper, the long-term fatigue test will be conducted to prevent fatigue failure, which is a representative cause of actual structural damage.

FeCO3/rGO Composites Prepared by CO2 Capture and Carbonate Conversion: Anode Material in Lithium-Ion Batteries with Enhanced Performance (이산화탄소 포집 및 탄산염 전환 통해 제조된 FeCO3/rGO 복합체: 리튬이온 전지향 고성능 음극재)

  • Sanglim Lee;Gahwi Gu;Daeung Park;Hwiyun Im;Yongjae Lee;Junseok Moon;Weonho Shin;Hiesang Sohn
    • Membrane Journal
    • /
    • v.34 no.5
    • /
    • pp.253-261
    • /
    • 2024
  • Carbon capture, utilization, and storage (CCUS) technology is gaining attention as a key strategy for achieving carbon neutrality. In this study, CO2 was permanently fixed as carbonate through mineral carbonation and applied as an anode material for lithium-ion batteries (LIBs). Such a fixed carbonate by CO2 was used for the preparation of FeCO3 composited with rGO and PVP to be applied as active material for negative electrode in LIBs. Specifically, the rGO plays an important role to increase electrical conductivity and prevent particle aggregation while PVP could stabilize the particle surface and strengthened structural stability as a surfactant. Electrochemical tests showed that the LIB anode material based on FeCO3/rGO composite maintained a capacity of 400 mAh/g after 50 cycles at a current density of 1,620 mA/g. This study suggests the converting CO2 into valuable battery materials can contribute to future energy storage technologies.

Horizontal only and horizontal-vertical combined earthquake effects on three R/C frame building structures through linear time-history analysis (LTHA): An implementation to Turkey

  • Selcuk Bas;Mustafa A. Bilgin
    • Computers and Concrete
    • /
    • v.34 no.3
    • /
    • pp.329-346
    • /
    • 2024
  • In this study, it is aimed to investigate the vertical seismic performance of reinforced concrete (R/C) frame buildings in two different building stocks, one of which consists of those designed as per the previous Turkish Seismic Code (TSC-2007) that does not consider the vertical earthquake load, and the other of which consists of those designed as per the new Turkish Seismic Code (TSCB-2018) that considers the vertical earthquake load. For this aim, three R/C buildings with heights of 15 m, 24 m and 33 m are designed separately as per TSC-2007 and TSCB-2018 based on some limitations in terms of seismic zone, soil class and structural behavior factor (Rx/Ry) etc. The vertical earthquake motion effects are identified according to the linear time-history analyses (LTHA) that are performed separately for only horizontal (H) and combined horizontal+vertical (H+V) earthquake motions. LTHA is performed to predict how vertical earthquake motion affects the response of the designed buildings by comparing the linear response parameters of the base shear force, the base overturning, the base axial force, top-story vertical displacement. Nonlinear time-history analysis (NLTHA) is generally required for energy dissipative buildings, not required for design of buildings. In this study, the earthquake records are scaled to force the buildings in the linear range. Since nonlinear behavior is not expected from the buildings herein, the nonlinear time-history analysis (NLTHA) is not considered. Eleven earthquake acceleration records are considered by scaling them to the design spectrum given in TSCB-2018. The base shear force is obtained not to be affected from the combined H+V earthquake load for the buildings. The base overturning moment outcomes underline that the rigidity of the frame system in terms of the dimensions of the columns can be a critical parameter for the influence of the vertical earthquake motion on the buildings. In addition, the building stock from TSC-2007 is estimated to show better vertical earthquake performance than that of TSCB-2018. The vertical earthquake motion is found out to be highly effective on the base axial force of 33 m building rather than 15 m and 24 m buildings. Thus, the building height is a particularly important parameter for the base axial force. The percentage changes in the top-story vertical displacement of the buildings designed for both codes show an increase parallel to that in the base axial force results. To extrapolate more general results, it is clear to state that many buildings should be analyzed.

High quality topological insulator Bi2Se3 grown on h-BN using molecular beam epitaxy

  • Park, Joon Young;Lee, Gil-Ho;Jo, Janghyun;Cheng, Austin K.;Yoon, Hosang;Watanabe, Kenji;Taniguchi, Takashi;Kim, Miyoung;Kim, Philip;Yi, Gyu-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.284-284
    • /
    • 2016
  • Topological insulator (TI) is a bulk-insulating material with topologically protected Dirac surface states in the band gap. In particular, $Bi_2Se_3$ attracted great attention as a model three-dimensional TI due to its simple electronic structure of the surface states in a relatively large band gap (~0.3 eV). However, experimental efforts using $Bi_2Se_3$ have been difficult due to the abundance of structural defects, which frequently results in the bulk conduction being dominant over the surface conduction in transport due to the bulk doping effects of the defect sites. One promising approach in avoiding this problem is to reduce the structural defects by heteroepitaxially grow $Bi_2Se_3$ on a substrate with a compatible lattice structure, while also preventing surface degradation by encapsulating the pristine interface between $Bi_2Se_3$ and the substrate in a clean growth environment. A particularly promising choice of substrate for the heteroepitaxial growth is hexagonal boron nitride (h-BN), which has the same two-dimensional (2D) van der Waals (vdW) layered structure and hexagonal lattice symmetry as $Bi_2Se_3$. Moreover, since h-BN is a dielectric insulator with a large bandgap energy of 5.97 eV and chemically inert surfaces, it is well suited as a substrate for high mobility electronic transport studies of vdW material systems. Here we report the heteroepitaxial growth and characterization of high quality topological insulator $Bi_2Se_3$ thin films prepared on h-BN layers. Especially, we used molecular beam epitaxy to achieve high quality TI thin films with extremely low defect concentrations and an ideal interface between the films and substrates. To optimize the morphology and microstructural quality of the films, a two-step growth was performed on h-BN layers transferred on transmission electron microscopy (TEM) compatible substrates. The resulting $Bi_2Se_3$ thin films were highly crystalline with atomically smooth terraces over a large area, and the $Bi_2Se_3$ and h-BN exhibited a clear heteroepitaxial relationship with an atomically abrupt and clean interface, as examined by high-resolution TEM. Magnetotransport characterizations revealed that this interface supports a high quality topological surface state devoid of bulk contribution, as evidenced by Hall, Shubnikov-de Haas, and weak anti-localization measurements. We believe that the experimental scheme demonstrated in this talk can serve as a promising method for the preparation of high quality TI thin films as well as many other heterostructures based on 2D vdW layered materials.

  • PDF

Feasibility Study on the Fault Tree Analysis Approach for the Management of the Faults in Running PCR Analysis (PCR 과정의 오류 관리를 위한 Fault Tree Analysis 적용에 관한 시범적 연구)

  • Lim, Ji-Su;Park, Ae-Ri;Lee, Seung-Ju;Hong, Kwang-Won
    • Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.245-252
    • /
    • 2007
  • FTA (fault tree analysis), an analytical method for system failure management, was employed in the management of faults in running PCR analysis. PCR is executed through several processes, in which the process of PCR machine operation was selected for the analysis by FTA. The reason for choosing the simplest process in the PCR analysis was to adopt it as a first trial to test a feasibility of the FTA approach. First, fault events-top event, intermediate event, basic events-were identified by survey on expert knowledge of PCR. Then those events were correlated deductively to build a fault tree in hierarchical structure. The fault tree was evaluated qualitatively and quantitatively, yielding minimal cut sets, structural importance, common cause vulnerability, simulation of probability of occurrence of top event, cut set importance, item importance and sensitivity. The top event was 'errors in the step of PCR machine operation in running PCR analysis'. The major intermediate events were 'failures in instrument' and 'errors in actions in experiment'. The basic events were four events, one event and one event based on human errors, instrument failure and energy source failure, respectively. Those events were combined with Boolean logic gates-AND or OR, constructing a fault tree. In the qualitative evaluation of the tree, the basic events-'errors in preparing the reaction mixture', 'errors in setting temperature and time of PCR machine', 'failure of electrical power during running PCR machine', 'errors in selecting adequate PCR machine'-proved the most critical in the occurrence of the fault of the top event. In the quantitative evaluation, the list of the critical events were not the same as that from the qualitative evaluation. It was because the probability value of PCR machine failure, not on the list above though, increased with used time, and the probability of the events of electricity failure and defective of PCR machine were given zero due to rare likelihood of the events in general. It was concluded that this feasibility study is worth being a means to introduce the novel technique, FTA, to the management of faults in running PCR analysis.

A New Understanding on Environmental Problems in China - Dilemma between Economic Development and Environmental Protection - (중국 환경문제에 대한 재인식 -경제발전과 환경보호의 딜레마-)

  • Won, Dong-Wook
    • Journal of Environmental Policy
    • /
    • v.5 no.1
    • /
    • pp.45-70
    • /
    • 2006
  • China has achieved great economic growth above 9% annual since it changed to more of a market economy system by its reform and open-door policy. At the same time, China has experienced severe ecological deterioration, such as air and water pollutions caused by its rapid urbanization and industrialization. China is now confronted with environmental pollution and ecological deterioration at a critical point, at which economic development in China is limited. Moreover, environmental problems in China have become a lit fuse for social fluctuation beyond pollution problems. The root and background of environmental problems in China, firstly, are its government's lack of understanding of these problems and incorrect economic policies affected by political and ideological prejudice. Secondly, the plundering of resources, 'the principle of development first' which didn't consider environmental sustainability is another source of environmental deterioration in China. In addition, a huge population and poverty in China have increased the difficulty in solving its environmental problems, and in fact have accelerated them. The Chinese government has established many environmental laws and institutions, increased environmental investments, and is enlarging the participation of NGOs and the general public in some limited scale to solve its environmental problems. However, it has not obtained effective results because of the lack of environmental investments owing to the government's limit of the development phase, a structural limit of law enforcement and local protectionism, and the limit of political independency in NGOs and the lack of public participation in China. It seems that China remains in the stage of 'economic development first, environmental protection second', contrary to its catch-phrase of 'the harmony between economic development and environmental protection'. China is now confronted with dual pressure both domestically and abroad because of deepening environmental problems. There are growing public's protests and demonstrations in China in response to the spread of damage owing to environmental pollution and ecological deterioration. On the other hand, international society, in particular neighboring countries, regard China as a principal cause of ecological disaster. In the face of this dual pressure, China is presently contemplating a 'recycling economy' that helps sustainable development through the structural reform of industries using too much energy and through more severe law enforcement than now. Therefore, it is desirable to promote regional cooperation more progressively and practically in the direction of building China's ability to solve environmental problems.

  • PDF