Acknowledgement
This work was supported by Korea Electric Power Corporation (KEPCO) (Grant Number: R22XO05-09) and an NRF grant funded by the Ministry of Science and ICT (MSIT) of Korea (grant number NRF-RS-2023-0022 2124).
References
- P. A. Owusu and S. Asumadu-Sarkodie, "A review of renewable energy sources, sustainability issues and climate change mitigation", Cogent Eng., 3, 1167990 (2016).
- T. Dietz, R. L. Showom, and C. T. Whitley, "Climate change and society", Annu. Rev. Sociol., 46, 135-158 (2020).
- G. A. Florides and P. Christodoulides, "Global warming and carbon dioxide through sciences", Environment Inter., 35, 390-400 (2009).
- A. C. Kone and T. Buke, "Forecasting of CO2 emissions from fuel combustion using trend analysis", Sustainable Energy Rev., 14, 2906-2915 (2010).
- E. Benhelal, G. Zahedi, E. Shamsaei, and A. Bahadori, "Global strategies and potentials to curb CO2 emissions in cement industry", J. Cleaner Prod., 51, 142-161 (2013).
- P. Nejat, F. Jomehzadeh, M. M. Taheri, M. Gohari, and M. Z. A. Majid, "A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)", Renew. Sustainable Energy Rev., 43, 843-862 (2015).
- E. I. Koytsoumpa, C. Bergins, and E. Kakaras, "The CO2 economy: Review of CO2 capture and reuse technologies", J. Supercritical Fluids, 132, 3-1 (2018).
- E. S. Rubin, J. E. Davison, and H. J. Herzog "The cost of CO2 capture and storage", Inter. J. Greenhouse Gas Control, 40, 378-400 (2015).
- L. Fu, Z. Ren, W. Si, Q. Ma, W. Huang, K. Liao, H. Huang, Y. Wang, J. Li, and P. Xu, "Research progress on CO2 capture and utilization technology", J. CO2 Utilization, 66, 102260 (2022).
- J.-W. Lee and W.-B. Kim, "Research trend of electrode materials for lithium rechargeable batteries", J. Kor. Powder Metall. Inst., 21, 473-479, (2014).
- D. U. Park, W. H. Shin, and H. Sohn, "The enhanced electrochemical performance of lithium metal batteries through the piezoelectric protective layer", Membrane J., 33, 13 (2023).
- J. H. Lim, J. H. Won, M. K. Kim, D. S. Jung, M. Kim, S.-M. Koo, J.-M. Oh, H. M. Jeong, C. Park, H. Sohn, and W. H. Shin, "Synthesis of flower-like manganese oxide for accelerated surface redox reactions on nitrogen-rich graphene of fast charge transport for sustainable aqueous energy storage", J. Mater. Chem. A, 10, 7688 (2022).
- Y. Jeong, J. Park, S. Lee, S. H. Oh, W. J. Kim, Y. J. Ji, G. Y. Park, D. Seok, W. H. Shin, J.-M. Oh, T. Lee, C. Park, A. Seubsaic, and H. Sohn, "Iron oxide-carbon nanocomposites modified by organic ligands: Novel pore structure design of anode materials for lithium-ion batteries", J. Elec. Anal. Chem., 904, 115905 (2022).
- S. Lee, S.-S. Choi, J.-H. Hyun, D.-E. Kim, Y.-W. Park, J.-S. Yu, S.-Y. Jeon, J. Park, W. H. Shin, and H. Sohn, "Nanostructured PVdF-HFP/TiO2 composite as protective layer on lithium metal battery anode with enhanced electrochemical performance", Membrane J., 31, 417 (2021).
- K. Hwang, N. Kim, Y. Jeong, H. Sohn, and S. Yoon, "Controlled nanostructure of a graphene nanosheet-TiO2 composite fabricated via mediation of organic ligands for high-performance Li storage applications", Int. J. Energy Res., 2021, 1 (2021).
- D. Seok, W. H. Shin, S. W. Kang, and H. Sohn, "Piezoelectric composite of BaTiO3-coated SnO2 microsphere: Li-ion battery anode with enhanced electrochemical performance based on accelerated Li+ mobility", J. Alloys Comp., 870, 159267 (2021).
- S. Lee, D. Seok, Y. Jeong, and H. Sohn, "Surface modification of Li metal electrode with PDMS/GO composite thin film: Controlled growth of Li layer and improved performance of lithium metal battery (LMB)", Membrane J., 30, 38 (2020).
- Y. Jeong, D. Seok, S. Lee, W. H Shin, and H. Sohn, "Polymer/inorganic nanohybrid membrane on lithium metal electrode: Effective control of surficial growth of lithium layer and its improved electrochemical performance", Membrane J., 30, 30 (2020).
- D. Seok, Y. Jeong, K. Han, D. Y. Yoon, and H. Sohn, "Recent progress of electrochemical energy devices: Metal oxide-carbon nanocomposites as materials for next-generation chemical storage for renewable energy", Sustainability, 11, 3694 (2019).
- K. B. Hwang, H. Sohn, and S. H. Yoon, "Mesostructured niobium-doped titanium oxide-carbon (Nb-TiO2-C) composite as an anode for high-performance lithium-ion batteries", J. Power Sources, 378, 225-234 (2018).
- J. Li, M. Li, C. Guo, and L. Zhang, "Recent progress and challenges of micro-/nanostructured transition metal carbonate anodes for lithium ion batteries", Eur. J. Inorg. Chem., 41, 4508-4521 (2018).
- M. Zhao, Y. Liu, J. Jiang, C. Ma, G. Yang, F. Yin, and Y. Yang, "Sheath/core hybrid FeCO3/carbon nanofibers as anode materials for superior cycling stability and rate performance", ChemElectroChem, 4, 1450-1456 (2017).
- M. Kwon, J. Park, and J. Hwang, "Conversion reaction-based transition metal oxides as anode materials for lithium ion batteries: Recent progress and future prospects", Ceramist, 25, 2, 218-246, (2022).
- L. Su, Z. Zhou, X. Qin, Q. Tang, D. Wu, and P. Shen, "CoCO3 submicro cube/graphene composites with high lithium storage capability", Nano Energy, 2, 276-282 (2013).
- C. Zhang, W. Liu, D. Chen, J. Huang, X. Yu, X. Huang, and Y. Fang, "One step hydrothermal synthesis of FeCO3 cubes for high performance lithium-ion battery anodes", Electrochim. Acta, 182, 559-564 (2015).
- X. Liu, H. Wang, C. Su, P. Zhang, and J. Bai, "Controlled fabrication and characterization of microspherical FeCO3 and α-Fe2O3", J. Col. Interface Sci., 351, 427-432 (2010).
- F. Zhang, R. Zhang, J. Feng, L. Ci, S. Xiong, J. Yang, Y. Qian, and L. Li, "One-pot solvothermal synthesis of graphene wrapped rice-like ferrous carbonate nanoparticles as anode materials for high energy lithium-ion batteries", Nanoscale, 7, 232-239 (2015).
- K. H. Seng, M.-H. Park, Z. P. Guo, H. K. Liu, and J. Cho, "Catalytic role of Ge in highly reversible GeO2/Ge/C nanocomposite anode material for lithium batteries", Nano Lett., 13, 1230-1236 (2013).
- B. Yao, Z. J. Ding, X. Y. Feng, L. W. Yin, Q. Shen, Y. C. Shi, and J. X. Zhang, "Enhanced rate and cycling performance of FeCO3/graphene composite for high energy Li ion battery anodes", Electrochim. Acta, 148, 283-290 (2014).
- S. Veerasingam and R. Venkatachalapathy, "Estimation of carbonate concentration and characterization of marine sediments by fourier transform infrared spectroscopy", Infrared Phys. Technol., 66, 136-140 (2014).
- D. Xu, W. Liu, C. Zhang, X. Cai, W. Chen, Y. Fang, and X. Yu, "Monodispersed FeCO3 nanorods anchored on reduced graphene oxide as mesoporous composite anode for high-performance lithium-ion batteries", J. Power Sources, 364, 359-366 (2017).
- Y. Huang, Y. Li, R. Huang, and J. Yao, "Ternary Fe2O3/Fe3O4/FeCO3 composite as a high-performance anode material for lithium-ion batteries", J. Phys. Chem. C, 123, 12614-12622 (2019).
- M. Zhao, Y. Liu, J. Jiang, C. Ma, G. Yang, F. Yin, and Y. Yang, "Sheath/core hybrid FeCO3/carbon nanofibers as anode materials for superior cycling stability and rate performance", ChemElectroChem, 4, 1450 (2017).
- X. Zhou, Y. Zhong, M. Yang, Q. Zhang, J. Wei, and Z. Zhou, "CO2(OH)2CO3 nanosheets and CoO nanonets with tailored pore sizes as anodes for lithium ion batteries", ACS Appl. Mater. Interfaces, 7, 12022-12029 (2015).
- Y. Zhao, Y. L. Mu, L. Wang, M. J. Liu, X. Lai, J. Bi, D. J. Gao, and Y. F. Chen, "MnCO3-RGO composite anode materials: In-situ solvothermal synthesis and electrochemical performances", Electro. Acta, 317, 786-794 (2019).
- G. Xi, X. Jiao, Q. Peng, and T. Zeng, "Anchored CoCO3 on peeled graphite sheets toward high-capacity lithium-ion battery anode", J. Mater. Sci., 56, 10510-10522 (2021).
- D. Kim, Y. Kim, and H. Kim, "Improved fast charging capability of graphite anodes via amorphous Al2O3 coating for high power lithium ion batteries", J. Power Sources, 422, 18-24 (2019).
- Y. Wang, "Coprecipitated 3D nanostructured graphene oxide-Mn3O4 hybrid as anode of lithium-ion batteries", J. Mater. Res., 30, 484-492 (2015).
- D. Jang, S. Suh, H. Yoon, J. Kim, H. Kim, J. Baek, and H. Kim, "Enhancing rate capability of graphite anodes for lithium-ion batteries by pore-structuring", Appl. Surf. Sci. Adv., 6, 100168 (2021).
- M. He, H. P. Zhou, G. Q. Ding, Z. D. Zhang, X. Ye, D. Cai, and M. Q. Wu, "Theoretical-limit exceeded capacity of the N2+H2 plasma modified graphite anode material", Carbon, 146, 194-199 (2019).
- F. Ding, W. Xu, D. Choi, W. Wang, X. Li, M. H. Engelhard, X. Chen, Z. Yan, and J. Zhang, "Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries", J. Mater. Chem., 22, 12745 (2012).
- S. Yehezkel, M. Auinat, N. Sezin, D. Starosvetsky, and Y. Ein-Eli, "Bundled and densified carbon nanotubes (CNT) fabrics as flexible ultra-light weight Li-ion battery anode current collectors", J. Power Sources, 312, 109-115 (2016).
- L. Li, C. Fan, B. Zeng, and M. Tan, "Effect of pyrolysis temperature on lithium storage performance of pyrolitic-PVDF coated hard carbon derived from cellulose", Mater. Chem. Phys., 242, 122380 (2020).