DOI QR코드

DOI QR Code

FeCO3/rGO Composites Prepared by CO2 Capture and Carbonate Conversion: Anode Material in Lithium-Ion Batteries with Enhanced Performance

이산화탄소 포집 및 탄산염 전환 통해 제조된 FeCO3/rGO 복합체: 리튬이온 전지향 고성능 음극재

  • Sanglim Lee (Department of Chemical Engineering, Kwangwoon University) ;
  • Gahwi Gu (Department of Chemical Engineering, Kwangwoon University) ;
  • Daeung Park (Department of Chemical Engineering, Kwangwoon University) ;
  • Hwiyun Im (Department of Chemical Engineering, Kwangwoon University) ;
  • Yongjae Lee (Department of Chemical Engineering, Kwangwoon University) ;
  • Junseok Moon (Department of Chemical Engineering, Kwangwoon University) ;
  • Weonho Shin (Department of Electronic Material Engineering, Kwangwoon University) ;
  • Hiesang Sohn (Department of Chemical Engineering, Kwangwoon University)
  • 이상림 (광운대학교 화학공학과) ;
  • 구가휘 (광운대학교 화학공학과) ;
  • 박대웅 (광운대학교 화학공학과) ;
  • 임휘윤 (광운대학교 화학공학과) ;
  • 이용재 (광운대학교 화학공학과) ;
  • 문준석 (광운대학교 화학공학과) ;
  • 신원호 (광운대학교 전자재료공학과) ;
  • 손희상 (광운대학교 화학공학과)
  • Received : 2024.09.30
  • Accepted : 2024.10.15
  • Published : 2024.10.30

Abstract

Carbon capture, utilization, and storage (CCUS) technology is gaining attention as a key strategy for achieving carbon neutrality. In this study, CO2 was permanently fixed as carbonate through mineral carbonation and applied as an anode material for lithium-ion batteries (LIBs). Such a fixed carbonate by CO2 was used for the preparation of FeCO3 composited with rGO and PVP to be applied as active material for negative electrode in LIBs. Specifically, the rGO plays an important role to increase electrical conductivity and prevent particle aggregation while PVP could stabilize the particle surface and strengthened structural stability as a surfactant. Electrochemical tests showed that the LIB anode material based on FeCO3/rGO composite maintained a capacity of 400 mAh/g after 50 cycles at a current density of 1,620 mA/g. This study suggests the converting CO2 into valuable battery materials can contribute to future energy storage technologies.

탄소중립을 달성하기 위해 이산화탄소를 포집, 활용, 저장하는 CCUS (carbon capture, utilization, and storage) 기술이 주목받고 있다. 본 연구에서는 광물 탄산화 공정을 통해 이산화탄소를 탄산염으로 고정하고, 이를 전이금속 탄산염 기반 리튬이온배터리 (LIB) 음극재로 적용하였다. CO2를 탄산염으로 고정후, 이를 이용해 FeCO3를 제작하고, rGO와 PVP와 복합화하여 음극활물질에 적용하였다. rGO는 전기전도도를 높이고 입자의 응집을 방지해 부피 팽창을 완화했으며, PVP는 계면활성제로서 입자 표면을 안정화하여 구조적 안정성을 강화하였다. FeCO3-PVP-rGO 복합체 기반한 음극재에 대한 전기화학 테스트를 진행한 결과, FeCO3/rGO 복합체는 1,620 mA/g의 전류 밀도에서 50 사이클 이후에도 400 mAh/g의 용량을 유지하였다. 본 연구는 CO2를 고부가가치 배터리 소재로 전환하여 차세대 에너지 저장 기술에 기여할 가능성을 시사한다.

Keywords

Acknowledgement

This work was supported by Korea Electric Power Corporation (KEPCO) (Grant Number: R22XO05-09) and an NRF grant funded by the Ministry of Science and ICT (MSIT) of Korea (grant number NRF-RS-2023-0022 2124).

References

  1. P. A. Owusu and S. Asumadu-Sarkodie, "A review of renewable energy sources, sustainability issues and climate change mitigation", Cogent Eng., 3, 1167990 (2016).
  2. T. Dietz, R. L. Showom, and C. T. Whitley, "Climate change and society", Annu. Rev. Sociol., 46, 135-158 (2020).
  3. G. A. Florides and P. Christodoulides, "Global warming and carbon dioxide through sciences", Environment Inter., 35, 390-400 (2009).
  4. A. C. Kone and T. Buke, "Forecasting of CO2 emissions from fuel combustion using trend analysis", Sustainable Energy Rev., 14, 2906-2915 (2010).
  5. E. Benhelal, G. Zahedi, E. Shamsaei, and A. Bahadori, "Global strategies and potentials to curb CO2 emissions in cement industry", J. Cleaner Prod., 51, 142-161 (2013).
  6. P. Nejat, F. Jomehzadeh, M. M. Taheri, M. Gohari, and M. Z. A. Majid, "A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)", Renew. Sustainable Energy Rev., 43, 843-862 (2015).
  7. E. I. Koytsoumpa, C. Bergins, and E. Kakaras, "The CO2 economy: Review of CO2 capture and reuse technologies", J. Supercritical Fluids, 132, 3-1 (2018).
  8. E. S. Rubin, J. E. Davison, and H. J. Herzog "The cost of CO2 capture and storage", Inter. J. Greenhouse Gas Control, 40, 378-400 (2015).
  9. L. Fu, Z. Ren, W. Si, Q. Ma, W. Huang, K. Liao, H. Huang, Y. Wang, J. Li, and P. Xu, "Research progress on CO2 capture and utilization technology", J. CO2 Utilization, 66, 102260 (2022).
  10. J.-W. Lee and W.-B. Kim, "Research trend of electrode materials for lithium rechargeable batteries", J. Kor. Powder Metall. Inst., 21, 473-479, (2014).
  11. D. U. Park, W. H. Shin, and H. Sohn, "The enhanced electrochemical performance of lithium metal batteries through the piezoelectric protective layer", Membrane J., 33, 13 (2023).
  12. J. H. Lim, J. H. Won, M. K. Kim, D. S. Jung, M. Kim, S.-M. Koo, J.-M. Oh, H. M. Jeong, C. Park, H. Sohn, and W. H. Shin, "Synthesis of flower-like manganese oxide for accelerated surface redox reactions on nitrogen-rich graphene of fast charge transport for sustainable aqueous energy storage", J. Mater. Chem. A, 10, 7688 (2022).
  13. Y. Jeong, J. Park, S. Lee, S. H. Oh, W. J. Kim, Y. J. Ji, G. Y. Park, D. Seok, W. H. Shin, J.-M. Oh, T. Lee, C. Park, A. Seubsaic, and H. Sohn, "Iron oxide-carbon nanocomposites modified by organic ligands: Novel pore structure design of anode materials for lithium-ion batteries", J. Elec. Anal. Chem., 904, 115905 (2022).
  14. S. Lee, S.-S. Choi, J.-H. Hyun, D.-E. Kim, Y.-W. Park, J.-S. Yu, S.-Y. Jeon, J. Park, W. H. Shin, and H. Sohn, "Nanostructured PVdF-HFP/TiO2 composite as protective layer on lithium metal battery anode with enhanced electrochemical performance", Membrane J., 31, 417 (2021).
  15. K. Hwang, N. Kim, Y. Jeong, H. Sohn, and S. Yoon, "Controlled nanostructure of a graphene nanosheet-TiO2 composite fabricated via mediation of organic ligands for high-performance Li storage applications", Int. J. Energy Res., 2021, 1 (2021).
  16. D. Seok, W. H. Shin, S. W. Kang, and H. Sohn, "Piezoelectric composite of BaTiO3-coated SnO2 microsphere: Li-ion battery anode with enhanced electrochemical performance based on accelerated Li+ mobility", J. Alloys Comp., 870, 159267 (2021).
  17. S. Lee, D. Seok, Y. Jeong, and H. Sohn, "Surface modification of Li metal electrode with PDMS/GO composite thin film: Controlled growth of Li layer and improved performance of lithium metal battery (LMB)", Membrane J., 30, 38 (2020).
  18. Y. Jeong, D. Seok, S. Lee, W. H Shin, and H. Sohn, "Polymer/inorganic nanohybrid membrane on lithium metal electrode: Effective control of surficial growth of lithium layer and its improved electrochemical performance", Membrane J., 30, 30 (2020).
  19. D. Seok, Y. Jeong, K. Han, D. Y. Yoon, and H. Sohn, "Recent progress of electrochemical energy devices: Metal oxide-carbon nanocomposites as materials for next-generation chemical storage for renewable energy", Sustainability, 11, 3694 (2019).
  20. K. B. Hwang, H. Sohn, and S. H. Yoon, "Mesostructured niobium-doped titanium oxide-carbon (Nb-TiO2-C) composite as an anode for high-performance lithium-ion batteries", J. Power Sources, 378, 225-234 (2018).
  21. J. Li, M. Li, C. Guo, and L. Zhang, "Recent progress and challenges of micro-/nanostructured transition metal carbonate anodes for lithium ion batteries", Eur. J. Inorg. Chem., 41, 4508-4521 (2018).
  22. M. Zhao, Y. Liu, J. Jiang, C. Ma, G. Yang, F. Yin, and Y. Yang, "Sheath/core hybrid FeCO3/carbon nanofibers as anode materials for superior cycling stability and rate performance", ChemElectroChem, 4, 1450-1456 (2017).
  23. M. Kwon, J. Park, and J. Hwang, "Conversion reaction-based transition metal oxides as anode materials for lithium ion batteries: Recent progress and future prospects", Ceramist, 25, 2, 218-246, (2022).
  24. L. Su, Z. Zhou, X. Qin, Q. Tang, D. Wu, and P. Shen, "CoCO3 submicro cube/graphene composites with high lithium storage capability", Nano Energy, 2, 276-282 (2013).
  25. C. Zhang, W. Liu, D. Chen, J. Huang, X. Yu, X. Huang, and Y. Fang, "One step hydrothermal synthesis of FeCO3 cubes for high performance lithium-ion battery anodes", Electrochim. Acta, 182, 559-564 (2015).
  26. X. Liu, H. Wang, C. Su, P. Zhang, and J. Bai, "Controlled fabrication and characterization of microspherical FeCO3 and α-Fe2O3", J. Col. Interface Sci., 351, 427-432 (2010).
  27. F. Zhang, R. Zhang, J. Feng, L. Ci, S. Xiong, J. Yang, Y. Qian, and L. Li, "One-pot solvothermal synthesis of graphene wrapped rice-like ferrous carbonate nanoparticles as anode materials for high energy lithium-ion batteries", Nanoscale, 7, 232-239 (2015).
  28. K. H. Seng, M.-H. Park, Z. P. Guo, H. K. Liu, and J. Cho, "Catalytic role of Ge in highly reversible GeO2/Ge/C nanocomposite anode material for lithium batteries", Nano Lett., 13, 1230-1236 (2013).
  29. B. Yao, Z. J. Ding, X. Y. Feng, L. W. Yin, Q. Shen, Y. C. Shi, and J. X. Zhang, "Enhanced rate and cycling performance of FeCO3/graphene composite for high energy Li ion battery anodes", Electrochim. Acta, 148, 283-290 (2014).
  30. S. Veerasingam and R. Venkatachalapathy, "Estimation of carbonate concentration and characterization of marine sediments by fourier transform infrared spectroscopy", Infrared Phys. Technol., 66, 136-140 (2014).
  31. D. Xu, W. Liu, C. Zhang, X. Cai, W. Chen, Y. Fang, and X. Yu, "Monodispersed FeCO3 nanorods anchored on reduced graphene oxide as mesoporous composite anode for high-performance lithium-ion batteries", J. Power Sources, 364, 359-366 (2017).
  32. Y. Huang, Y. Li, R. Huang, and J. Yao, "Ternary Fe2O3/Fe3O4/FeCO3 composite as a high-performance anode material for lithium-ion batteries", J. Phys. Chem. C, 123, 12614-12622 (2019).
  33. M. Zhao, Y. Liu, J. Jiang, C. Ma, G. Yang, F. Yin, and Y. Yang, "Sheath/core hybrid FeCO3/carbon nanofibers as anode materials for superior cycling stability and rate performance", ChemElectroChem, 4, 1450 (2017).
  34. X. Zhou, Y. Zhong, M. Yang, Q. Zhang, J. Wei, and Z. Zhou, "CO2(OH)2CO3 nanosheets and CoO nanonets with tailored pore sizes as anodes for lithium ion batteries", ACS Appl. Mater. Interfaces, 7, 12022-12029 (2015).
  35. Y. Zhao, Y. L. Mu, L. Wang, M. J. Liu, X. Lai, J. Bi, D. J. Gao, and Y. F. Chen, "MnCO3-RGO composite anode materials: In-situ solvothermal synthesis and electrochemical performances", Electro. Acta, 317, 786-794 (2019).
  36. G. Xi, X. Jiao, Q. Peng, and T. Zeng, "Anchored CoCO3 on peeled graphite sheets toward high-capacity lithium-ion battery anode", J. Mater. Sci., 56, 10510-10522 (2021).
  37. D. Kim, Y. Kim, and H. Kim, "Improved fast charging capability of graphite anodes via amorphous Al2O3 coating for high power lithium ion batteries", J. Power Sources, 422, 18-24 (2019).
  38. Y. Wang, "Coprecipitated 3D nanostructured graphene oxide-Mn3O4 hybrid as anode of lithium-ion batteries", J. Mater. Res., 30, 484-492 (2015).
  39. D. Jang, S. Suh, H. Yoon, J. Kim, H. Kim, J. Baek, and H. Kim, "Enhancing rate capability of graphite anodes for lithium-ion batteries by pore-structuring", Appl. Surf. Sci. Adv., 6, 100168 (2021).
  40. M. He, H. P. Zhou, G. Q. Ding, Z. D. Zhang, X. Ye, D. Cai, and M. Q. Wu, "Theoretical-limit exceeded capacity of the N2+H2 plasma modified graphite anode material", Carbon, 146, 194-199 (2019).
  41. F. Ding, W. Xu, D. Choi, W. Wang, X. Li, M. H. Engelhard, X. Chen, Z. Yan, and J. Zhang, "Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries", J. Mater. Chem., 22, 12745 (2012).
  42. S. Yehezkel, M. Auinat, N. Sezin, D. Starosvetsky, and Y. Ein-Eli, "Bundled and densified carbon nanotubes (CNT) fabrics as flexible ultra-light weight Li-ion battery anode current collectors", J. Power Sources, 312, 109-115 (2016).
  43. L. Li, C. Fan, B. Zeng, and M. Tan, "Effect of pyrolysis temperature on lithium storage performance of pyrolitic-PVDF coated hard carbon derived from cellulose", Mater. Chem. Phys., 242, 122380 (2020).