• Title/Summary/Keyword: Structural biology

Search Result 856, Processing Time 0.024 seconds

Structure-based Identification of a Novel NTPase from Methanococcus jannaschii

  • Hwang, Kwang-Yeon;Chung, Ji-Hyung;Kim, Sung-Hou;Han, Ye-Sun;Yunje Cho
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.17-17
    • /
    • 1999
  • Almost half of the entire set of predicted genomic products from M ethanococcus jannaschii are classified as functionally unknown hypothetical proteins. We present a structure-based identification of the biochemical function of a protein with hitherto-unknown function from a M. jannaschii gene, Mj0226.(omitted)

  • PDF

Transverse relaxation-optimized HCN experiment for tautomeric states of histidine sidechains

  • Schmidt, Holger;Himmel, Sebastian;Walter, Korvin F.A.;Klaukien, Volker;Funk, Michael;Lee, Dong-Han
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.12 no.2
    • /
    • pp.89-95
    • /
    • 2008
  • Function of protein is frequently related with tautomeric states of histidine sidechains. Thus, several NMR experiments were developed to determine the tautomeric states of histidines. However, poor sensitivity of these experiments caused by long duration of magnetization transfer periods is unavoidable. Here, we alleviate the sensitivity of HCN experiment for determining the tautomeric states of histidine residues using TROSY principle to suppress transverse relaxation of $^{13}C$ spins during long polarization transfer delays involving $^{13}C-^{15}N$ scalar couplings. In addition, this experiment was used to assign the sidechain resonances of histidines. These assignments can be used to follow the pH-titration of histidine sidechains.

Structure and apoptotic function of p73

  • Yoon, Mi-Kyung;Ha, Ji-Hyang;Lee, Min-Sung;Chi, Seung-Wook
    • BMB Reports
    • /
    • v.48 no.2
    • /
    • pp.81-90
    • /
    • 2015
  • p73 is a structural and functional homologue of the p53 tumor suppressor protein. Like p53, p73 induces apoptosis and cell cycle arrest and transactivates p53-responsive genes, conferring its tumor suppressive activity. In addition, p73 has unique roles in neuronal development and differentiation. The importance of p73-induced apoptosis lies in its capability to substitute the pro-apoptotic activity of p53 in various human cancer cells in which p53 is mutated or inactive. Despite the great importance of p73-induced apoptosis in cancer therapy, little is known about the molecular basis of p73-induced apoptosis. In this review, we discuss the p73 structures reported to date, detailed structural comparisons between p73 and p53, and current understanding of the transcription-dependent and -independent mechanisms of p73-induced apoptosis.

Sensitivity Enhancement of Methyl-TROSY by Longitudinal 1H Relaxation Optimization

  • Lee, Dong-Han;Vijayan, Vinesh;Montaville, Pierre;Becker, Stefan;Griesinger, Christian
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.13 no.1
    • /
    • pp.15-26
    • /
    • 2009
  • The NMR detection of methyl groups is of keen interest because they provide the long-range distance information required to establish global folds of high molecular weight proteins. Using longitudinal $^1H$ relaxation optimization, we achieve a gain in sensitivity of approximately 1.6-fold in the methyl-TROSY and its NOESY experiments for the 38 kDa protein mitogen activated protein kinase p38 in its fully protonated and $^{13}C$ and $^{15}N$ labeled state.

Backbone 1H, 15N, and 13C Resonance Assignments and Secondary Structure of a Novel Protein OGL-20PT-358 from Hyperthermophile Thermococcus thioreducens sp. nov.

  • Wilson, Randall C.;Hughes, Ronny C.;Curto, Ernest V.;Ng, Joseph D.;Twigg, Pamela D.
    • Molecules and Cells
    • /
    • v.24 no.3
    • /
    • pp.437-440
    • /
    • 2007
  • $OGL-20P^T$-358 is a novel 66 amino acid residue protein from the hyperthermophile Thermococcus thioreducens sp. nov., strain $OGL-20P^T$, which was collected from the wall of the hydrothermal black smoker in the Rainbow Vent along the mid-Atlantic ridge. This protein, which has no detectable sequence homology with proteins or domains of known function, has a calculated pI of 4.76 and a molecular mass of 8.2 kDa. We report here the backbone $^1H$, $^{15}N$, and $^{13}C$ resonance assignments of $OGL-20P^T$-358. Assignments are 97.5% (316/324) complete. Chemical shift index was used to determine the secondary structure of the protein, which appears to consist of primarily ${\alpha}$-helical regions. This work is the foundation for future studies to determine the three-dimensional solution structure of the protein.