DOI QR코드

DOI QR Code

Sensitivity Enhancement of Methyl-TROSY by Longitudinal 1H Relaxation Optimization

  • Lee, Dong-Han (Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chenistry) ;
  • Vijayan, Vinesh (Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chenistry) ;
  • Montaville, Pierre (Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chenistry) ;
  • Becker, Stefan (Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chenistry) ;
  • Griesinger, Christian (Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chenistry)
  • Published : 2009.06.20

Abstract

The NMR detection of methyl groups is of keen interest because they provide the long-range distance information required to establish global folds of high molecular weight proteins. Using longitudinal $^1H$ relaxation optimization, we achieve a gain in sensitivity of approximately 1.6-fold in the methyl-TROSY and its NOESY experiments for the 38 kDa protein mitogen activated protein kinase p38 in its fully protonated and $^{13}C$ and $^{15}N$ labeled state.

Keywords

References

  1. K. Bromek, D. Lee, R. Hauhart, M. Krych-Goldberg, J.P. Atkinson, P.N. Barlow, and K.Pervushin, Polychromatic selective population inversion for TROSY experiments withlarge proteins, J Am Chem Soc 127,405-411 (2005). https://doi.org/10.1021/ja0462326
  2. G.M. Clore and A.M. Gronenborn, NMR structure determination of proteins and proteincomplexes larger than 20 kDa, Curr Opin Chem Biol 2, 564-570 (1998). https://doi.org/10.1016/S1367-5931(98)80084-7
  3. A. Eletsky, H.S. Atreya, G. Liu, and T. Szyperski, Probing structure and functional dynamics of (large) proteins with aromatic rings: L-GFT-TROSY (4,3)D HCCH NMR spectroscopy, J Am Chem Soc 127, 14578-14579 (2005). https://doi.org/10.1021/ja054895x
  4. R Ernst, G. Bodenhausen, and G. Wokaun, Principles of nuclear magnetic resonance in one and two dimensions, Oxford University Press, Oxford (1987).
  5. H. Geen and R. Freeman, Band-selective radiofrequency pulses, J Magn Reson 93, 93-141 (1991).
  6. N.K. Goto, K.H. Gardner, G.A. Mueller, RC. Willis, and L.E. Kay, A robust and costeffective method for the production of Val, Leu, Ile$({\delta}^1)$ methyl-protonated $^{15}N-,\;^{13}C-,\;^2H-$ labeled proteins, J Biomol NMR 13, 369-374 (1999). https://doi.org/10.1023/A:1008393201236
  7. M. Kainosho, T. Torizawa, Y. Iwashita, T. Terauchi, A. Mei Ono, and P. Guntert, Optimal isotope labelling for NMR protein structure determinations, Nature 440, 52-57 (2006).
  8. L.E. Kay and K.H. Gardner, Solution NMR spectroscopy beyond 25 kDa, Curr Opin Struct BioI 7, 722-731 (1997). https://doi.org/10.1016/S0959-440X(97)80084-X
  9. N. Khaneja, B. Luy, and S.J. Glaser, Boundary of quantum evolution under decoherence, Proc Natl Acad Sci USA 100, 13162-13166 (2003). https://doi.org/10.1073/pnas.2134111100
  10. E. Kupce, J. Boyd, and I.D. Campbell, Short selective pulses for biochemicalapplications, J Magn Reson B 106: 300-303 (1995). https://doi.org/10.1006/jmrb.1995.1049
  11. E. Kupce and R. Freeman, Wide-band excitation with polychromatic pulses, J Magn Reson A 108,268-273 (1994). https://doi.org/10.1006/jmra.1994.1123
  12. D. Lee, C. Hilty, G. Wider, and K. WUthrich, Effective rotational correlation times ofproteins from NMR relaxation interference, J Magn Reson 178, 72-76 (2006). https://doi.org/10.1016/j.jmr.2005.08.014
  13. D. Lee, B. Vogeli, and K. Pervushin, Detection of $C^',C^{\alpha}$ correlations in proteins using a new time- and sensitivity-optimal experiment, J Biomol NMR 31, 273-278 (2005). https://doi.org/10.1007/s10858-005-2361-4
  14. D. Marion, M. Ikura, R Tschudin, and A. Bax, Rapid recording of 2D NMR-spectra without phase cycling - Application to the study of hydrogen-exchange in proteins, J Magn Reson 85, 393-399 (1989).
  15. E. Miclet, D.C. Williams Jr, G.M. Clore, D.L. Bryce, J. Boisbouvier, and A. Bax,Relaxation-optimized NMR spectroscopy of methylene groups in proteins and nucleicacids, J Am Chem Soc 126, 10560-10570 (2004). https://doi.org/10.1021/ja047904v
  16. K. Pervushin, R. Riek, G. Wider, and K. Wuthrich, Attenuated $T_2$ relaxation by mutual cancellation of dipole- dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution, Proc Natl Acad Sci USA 94,12366-12371 (1997). https://doi.org/10.1073/pnas.94.23.12366
  17. K. Pervushin, B. Vogeli, and A. Eletsky, Longitudinal $^{'}H$ relaxation optimization in TROSY NMR spectroscopy, J Am Chem Soc 124,12898-12902 (2002). https://doi.org/10.1021/ja027149q
  18. R. Riek, J. Fiaux, E.B. Bertelsen, A.L. Horwich, and K. Wuthrich, Solution NMRtechniques for large molecular and supramolecular structures, J Am Chem Soc 124,12144-12153 (2002). https://doi.org/10.1021/ja026763z
  19. R. Riek, G. Wider, K. Pervushin, and K. WUthrich, Polarization transfer by crosscorrelated relaxation in solution NMR with very large molecules, Proc Natl Acad Sci USA 96, 4918-4923 (1999). https://doi.org/10.1073/pnas.96.9.4918
  20. P. Schanda and B. Brutscher, Very fast two-dimensional NMR spectroscopy for realtimeinvestigation of dynamic events in proteins on the time scale of seconds, J AmChem Soc 127, 8014-8015 (2005). https://doi.org/10.1021/ja051306e
  21. P. Schanda, E. Kupce, and B. Brutscher, SOFAST-HMQC experiments for recordingtwo-dimensional heteronuclear correlation spectra of proteins within a few seconds, J Biomol NMR 33, 199-211 (2005). https://doi.org/10.1007/s10858-005-4425-x
  22. A.J. Shaka, J. Keeler, T. Frenkiel, and R. Freeman, An improved sequence for broadband decoupling - WALTZ-16, J Magn Reson 52, 335-338 (1983).
  23. V. Tugarinov, P.M. Hwang, J.E. Ollerenshaw, and L.E. Kay, Cross-correlated relaxation enhanced $^{1}H-^{13}C$ NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes, J Am Chem Soc 125, 10420-10428 (2003). https://doi.org/10.1021/ja030153x
  24. V. Tugarinov, L.E. Kay, I. Ibraghimov, and V.Y. Orekhov, High-resolution fourdimensional $^{1}H-^{13}C$ NOE spectroscopy using methyl-TROSY, sparse data acquisition, and multidimensional decomposition, J Am Chem Soc 127, 2767-2775 (2005). https://doi.org/10.1021/ja044032o
  25. Y. Xu, Y. Zheng, J.S. Fan, and D. Yang, A new strategy for structure determination of large proteins in solution without deuteration, Nat Methods 3, 931-937 (2006). https://doi.org/10.1038/nmeth938
  26. K. Wuthrich, NMR of proteins and nucleic acids. Wiley, New York (1986).
  27. C. Zwahlen, S.J. Vincent, L. Dibari, M.H. Levitt, and G. Bodenhausen, Quenching spindiffusion in selective measurements of transient Overhauser effects in nuclear magnetic resonance - Applications to oligonucleotides, J Am Chem Soc 116, 362-368 (1994). https://doi.org/10.1021/ja00080a041

Cited by

  1. Background Gradient Correction using Excitation Pulse Profile for Fat and T2* Quantification in 2D Multi-Slice Liver Imaging vol.16, pp.1, 2012, https://doi.org/10.13104/jksmrm.2012.16.1.6