• Title/Summary/Keyword: Structural behavior analysis

Search Result 3,737, Processing Time 0.026 seconds

Numerical simulation of the crack propagation behavior in 3D elastic body

  • Taniguchi, Takeo;Miyaji, Akihiko;Suetsugu, Takeshi;Matsunaga, Shohgo
    • Structural Engineering and Mechanics
    • /
    • v.2 no.3
    • /
    • pp.227-244
    • /
    • 1994
  • The purpose of this investigation is to propose a numerical simulation method of the crack propagation behavior in 3-dimensionl elastic body. The simulation method is based on the displacement-type finite element method, and the linear fracture theory is introduced. The results from the proposed method are compared with those from the structural experiments, and the good coincidences between them are shown in this paper. At the same time, 2-dimensional analysis is also done, and the results are compared with those obtained from 3-dimensional analysis and the structural experiments.

Analysis for Column Shortening of RC Frame Structures Considering the Construction Sequences (시공단계를 고려한 RC 프레임의 기둥축소 해석)

  • 곽효경;서영재
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.210-217
    • /
    • 1999
  • This paper deals with the analysis for column shortening of RC frame structure considering the construction sequences. The time-dependent effects of concrete are taken into consideration in this study to simulate the actual structural behavior. The stiffness matrix of a beam element is derived on the bases of the layer approach, dividing a section with imaginary layers. Creep and shrinkage strains at each layer are calculated by using the first-order algorithm based on the expansion of creep compliance. Finally, the correlation studies with the purpose of analyzing the time-dependent behavior of building structure are conducted using the analytical model proposed in this study.

  • PDF

A Study on Development of Numerical Analysis Method Behavior for Properties of Steel Structure Member and Frame (강구조 부재와 골조의 거동 성상에 대한 해석수법의 개발에 관한 연구)

  • 박정민;김화중;이상재
    • Computational Structural Engineering
    • /
    • v.9 no.1
    • /
    • pp.115-123
    • /
    • 1996
  • This paper was developed to computer program, which is about to analyize nonlinear behavior of structural member and frame including to geometric and material nonlineality, and formulated to the relationship of stress-strain of steel. In order to examplity the efficiency of this program, the numerical analysis was done for H section steel beam and square steel tube column subjected to monotonic load, and braced steel frame subjected to repeated horizontal forces. The obtained results by this program were in accordance with existing experimental and analytical results respectively.

  • PDF

A Structural Analysis for Psychosocial Variables related to Sick Role Behavioral Compliance in Hemodialysis Patients (혈액투석 환자의 역할행위 이행과 관련된 사회·심리적 변인들 간의 구조분석)

  • Cho, Young-Mun
    • Korean Journal of Adult Nursing
    • /
    • v.28 no.4
    • /
    • pp.415-423
    • /
    • 2016
  • Purpose: This study was designed to identify the structural relationships among psychosocial variables related to sick role behavioral compliance among patients undergoing hemodialysis. Methods: The subjects were 476 patients from seven major hospitals and twelve dialysis centers located in D and P cities. Data were collected using self-report questionnaires. Data analysis was done by using SPSS/WIN 18.0 and AMOS 18.0 programs for structural equation modeling, to estimate the hypothesized model. Results: This findings support that a modified path model is efficient and appropriate to explain sick role behavioral compliance among hemodialysis patients. These factors account for 80.1% of the variance of sick-role behavioral compliance among hemodialysis patients. The variables having direct effect on sick role behavioral compliance were knowledge related to hemodialysis, social support, attitude, self-efficacy and intention. Conclusion: The modified model explains the integration process of psychosocial and behavior variables for sick-role behavioral compliance among patients undergoing hemodialysis.

FINITE ELEMENT MODEL FOR THE ANALYSIS OF FLUID-SATURATED POROUS SOLID (침수지반거동 해석을 위한 유한요소모델)

  • 구정회;홍순조;김문겸;황학주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.168-173
    • /
    • 1992
  • In the design and construction of underground structures, it is essential to accurately predict the structural behavior of the fluid-saturated ground during and after excavation. Terzaghi and Biot established the theory for the behavior of such two phase material. For the purpose of analysing the saturated porous solid system, finite element procedure provides a powerful tool. In this paper, a finite element analysis procedure based upon Biot's theory is presented to evaluate the deformation of solid skeleton and pore pressure of entraped fluid. Teraghi's onf-dimensional and Gibson's two-dimensional problems are solved using Q4 and Q8 element to verify the program validity.

  • PDF

A Study on the Geometrically Nonlinear Analysis of Spatial Structures by Using Arc Length Method (호장법을 이용한 공간구조의 기하학적 비선형 해석에 관한 연구)

  • Han, Sang-Eul;Lee, Sang-Ju;Lee, Kyoung-Soo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.381-386
    • /
    • 2007
  • The present study is concerned with the application of Constant arc-length method that proposed by Crisfield in the investigation of the geometrically nonlinear behaviour of spatial structures composed by truss or beam element. The arc-length method can trace the full nonlinear equilibrium path of Spatial structure far beyond the critical point such as limit or bifurcation point. So, we have developed the constant arc-length method of Crisfield to analysis spatial structure. The finite element formulation is used to develop the 3d truss/beam element including the geometrical nonlinear effect. In an effort to evaluate the merits of the methods, extensive numerical studies were carried out on a number of selected structural systems. The advantages of Constant arc length method in tracing the post-buckling behavior of spatial structures, are demonstrated.

  • PDF

Structural behavior of non-symmetrical steel cable-stayed bridges

  • Jorquera-Lucerga, Juan J.;Lozano-Galant, Jose A.;Turmo, Jose
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.447-468
    • /
    • 2016
  • Despite of the growing number of built examples, the analysis of non-symmetrical cable-stayed bridges has not received considerable attention from the researchers. In fact, the effects of the main design parameters in the structural behavior of these bridges are not addressed in detail in the literature. To fill this gap, this paper studies the structural response of a number of non-symmetrical cable-stayed bridges. With this aim, a parametric analysis is performed to evaluate the effect of each of the main design parameters (the ratio between the main and the back span length, the pylon, the deck and backstay stiffnesses, the pylon inclination, and the stay configuration) of this kind of bridges. Furthermore, the role of the geometrical nonlinearity and the steel consumption in stays are evaluated.

Evaluation of Structural Behavior of Precast-Concrete Column and H-Beam using Non-linear Finite Element Analysis (비선형 유한요소해석을 이용한 PC 기둥-H 형강보의 구조거동 분석)

  • Park Jeong-sim;Park Soon-kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.425-428
    • /
    • 2004
  • Nonlinear finite element analysis is conducted to predict the structural behavior of precast concrete column and steel beam connected by using bolted connections. The Nonlinear FEM program is based on the modified compression field theory which has good accuracy in the concrete structures. The link element is properly used to model the discontinuity between precast concrete column and steel beam. Predictions from the proposed model are compared with experimental results and it is concluded that structural behaviors of the composite structures, such as strength capacity, crack pattern and failure mode, can be predicted quite successfully.

  • PDF

Effect of seismic torsional component on nonlinear behavior of reinforced concrete multi-story buildings

  • Abderrahmane Ouazir;Asma Hadjadj;Mansour Ouazir;Mustapha Boukendakji;Hatem Gasmi
    • Structural Engineering and Mechanics
    • /
    • v.91 no.4
    • /
    • pp.349-355
    • /
    • 2024
  • This paper investigates the influence of the torsional component of earthquake on the nonlinear structural behavior of reinforced concrete (RC) buildings. It also estimates the equivalent additional eccentricity that results from this component. For this purpose, we generate torsional accelerograms from translational ones and conduct nonlinear seismic analysis on both regular and irregular structures. The results show that the torsional component has a significant impact on the structural response, especially for irregular structures. The equivalent additional eccentricity of the cases studied was higher than 5% which is the value of accidental eccentricity suggested by many seismic codes.

Modeling of RC shear walls strengthened by FRP composites

  • Sakr, Mohammed A.;El-khoriby, Saher R.;Khalifa, Tarek M.;Nagib, Mohammed T.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.407-417
    • /
    • 2017
  • RC shear walls are considered one of the main lateral resisting members in buildings. In recent years, FRP has been widely utilized in order to strengthen and retrofit concrete structures. A number of experimental studies used CFRP sheets as an external bracing system for retrofitting of RC shear walls. It has been found that the common mode of failure is the debonding of the CFRP-concrete adhesive material. In this study, behavior of RC shear wall was investigated with three different micro models. The analysis included 2D model using plane stress element, 3D model using shell element and 3D model using solid element. To allow for the debonding mode of failure, the adhesive layer was modeled using cohesive surface-to-surface interaction model at 3D analysis model and node-to-node interaction method using Cartesian elastic-plastic connector element at 2D analysis model. The FE model results are validated comparing the experimental results in the literature. It is shown that the proposed FE model can predict the modes of failure due to debonding of CFRP and behavior of CFRP strengthened RC shear wall reasonably well. Additionally, using 2D plane stress model, many parameters on the behavior of the cohesive surfaces are investigated such as fracture energy, interfacial shear stress, partial bonding, proposed CFRP anchor location and using different bracing of CFRP strips. Using two anchors near end of each diagonal CFRP strips delay the end debonding and increase the ductility for RC shear walls.