• Title/Summary/Keyword: Structural behavior

Search Result 7,222, Processing Time 0.029 seconds

Experimental Study on the Structural Behavior of Concrete-Filled Circular Tubular Column to H-Beam connections without Diaphragm (다이아프램이 없는 콘크리트 충전 원형강관 기둥-H형강 보 접합부의 구조적 거동에 관한 실험적 연구)

  • Kang, Hyun Sik;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.1 s.30
    • /
    • pp.13-22
    • /
    • 1997
  • This paper is concerned with an experimental study on structural behavior of Concrete-Filled Circular Tubular(CFCT) column to H-beam connections. The important parameters are the number of inner reinforced rib and the width of H-beam flange(100, 150, 200mm) with variable column thickness(5.8mm, 9.2mm, 12.5mm) around the joint between CFCT and H-beam. Test results are summarized for the displacement, strength, initial stiffness, failure mode and energy absorption capacity of each specimen. The purpose of this paper is to investigate the initial stiffness and the strength of connections to evaluate the structural behavior of the CFCT column to H-beam connections. From the discussion about the test results, the basic data for non diaphragm connection design would be suggested.

  • PDF

Structural Behavior of Fire-Damaged Reinforced Concrete Beam with High Strength Concrete (화재 피해를 입은 고 강도 철근콘크리트 휨 부재의 구조 거동)

  • 신미경;신영수;이차돈;홍성걸;이은주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.635-638
    • /
    • 2003
  • This paper deals with structural behavior of reinforced concrete beams with high strength under fire and fire damaged condition. The main purpose of this study is to evaluate the residual strength of flexural members by exposure time to fire. For this purpose, six beam specimens are fabricated and experimented. Among the specimens, four specimens are exposed to the fire for 60 and 90 minutes and two specimens are control beam that is not exposed to fire. After being cooled in room temperature, the specimens are loaded to the failure. The research result shows that the main variables of the test, concrete cover and exposure time to fire are much influenced on the structural behavior and the residual strength.

  • PDF

Telescopic columns as a new base isolation system for vibration control of high-rise buildings

  • Hosseini, Mahmood;Farsangi, Ehsan Noroozinejad
    • Earthquakes and Structures
    • /
    • v.3 no.6
    • /
    • pp.853-867
    • /
    • 2012
  • In this paper, a new type of passive energy dissipating system similar to added damping and stiffness (ADAS) and triangular added damping and stiffness (TADAS) is proposed and implemented in the analytical model of a building with hybrid structural system in the structure's base which we call it; Telescopic column. The behavior and performance of a high rise R.C. structure equipped with this system is investigated and compared with conventional base isolation systems such as rubber isolator bearings and friction pendulum bearings. For this purpose a series of ground acceleration records of the San Fernando, Long Beach and Imperial Valley earthquakes are used as the disturbing ground motions in a series of numerical simulations. The nonlinear numerical modeling which includes both material and geometric nonlinearities were carried out by using SAP2000 program. Results show suitable behavior of structures equipped with telescopic columns in controlling the upper stories drifts and accelerations.

Geometrically Nonlinear Dynamic Analysis of Cable Domes (케이블 돔의 기하학적 비선형 동적해석)

  • 한상을;서준호;김종범
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.61-68
    • /
    • 2003
  • Cable domes deform very largely because of the characteristics of flexible hybrid system and pre-tension, and include geometrical non-linearity in those structural behavior. Especially wind load is more dominant than seismic loads, because cable domes are flexible structures whose stiffness is very small and self-weight is very light. Therefore, in this paper, Modified Stiffly Stable Method is applied to analyze the nonlinear dynamic behavior of cable domes and compared these results with ones of Newmark-β Method which is generally used. The Seoul Olympic Gymnastic Arena is taken as an numerical example and three kinds of models with giving each different intensity of pre-tension are selected. And dynamic nonlinear behavior of cable domes are analyzed by artificial spectrum of wind velocity wave which is similar to actual wind loads.

  • PDF

A Study on the Behavior of Prestressed Concrete Box Girder Bridges According to material Properties (재료특성치의 변화로 인한 프리스트레스트 콘크리트 박스거더 교량의 거동분석)

  • 오병환;양인환;김의성;최인혁;김세훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.627-632
    • /
    • 1997
  • Recently, the prestressed concrete box girder bridges are increasingly built at various locations in the world. The mechanical and structural behavior of prestressed concrete brides varies because of time-dependent material properties and sequential change of structural system due to stepwise construction. The time-dependent behavior of concrete is of importance in the design and construction of segmentally constructed and cast-in-place prestressed concrete box girder bridges. The structural response is affected b variations in creep, shrinkage properties of concrete. In this study, the example of time-dependent deformations is extended to establish how the variability in concrete properties affects the accuracy of the calculated deformations in such a bridge, and finally the results are discussed.

  • PDF

Structural Behavior of Worn Tire Attached to Carbon Fiber Steel Pile by Wave and Current Forces (파랑 및 조류력에 의한 탄섬유강 말뚝에 부착된 폐타이어의 구조거동)

  • 홍남식;이상화
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.13-19
    • /
    • 2004
  • The structural behavior of a worn tire, attached to carbon fiber steel pile by current and wave forces, has been investigated through the numerical method. The finite element model has been developed, by considering that the composite material of rubber and cord is orthotropic, the rubber is isotropic, and that all the material behaves as linear elastic. The pressure distribution by wave and current, around the worn tire, has been estimated through the adjustment for the concept of flow separation. Also, the structural behavior of the worn tire has been examined, by comparing the situation wherein the space between the pile is reinforced, and tire as elastic and isotropic material, with the one left empty. Through this comparison, it is determined that the space between pile and tire has to be filled with elastic and isotropic material, in order to avoid the failure by wave and current action.

Local Buckling Behavior of Pultruded Structural Flexural Members (펄트루젼 구조용 휨부재의 국부좌굴 거동)

  • 정재호;윤순종
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.147-151
    • /
    • 2003
  • In this study, we discussed the local buckling behavior of pultruded structural flexural members. Previous works were briefly reviewed and the local buckling behavior of orthotropic box-shape flexural members was discussed. The simplified form of equation for finding the width ratio of plate element of box-shape flexural members in which all plate components buckle simultaneously was proposed and the macro flow-chart for finding local buckling strength of pultruded flexural members was also suggested. To establish the design guide line for the local buckling of pultruded flexural members, further studies need to be performed as follows; the simplified form of solutions for finding the minimum buckling coefficient of orthotropic plate with various loading and boundary conditions including rotationally restrained boundary conditions, the simplified form of equation for calculating the coefficient of restraint provided by the adjacent plate elements.

  • PDF

Structural behavior of precast concrete deck with ribbed loop joints in a composite bridge

  • Shin, Dong-Ho;Chung, Chul-Hun;Oh, Hyun-Chul;Park, Se-Jin;Kim, In-Gyu;Kim, Young-Jin;Byun, Tae-Kwan;Kang, Myoung-Gu
    • Smart Structures and Systems
    • /
    • v.17 no.4
    • /
    • pp.559-576
    • /
    • 2016
  • This study is intended to propose a precast bridge deck system, which has ribbed loop joints between the decks and lacks internal tendons to improve the workability of existing precast deck system. A composite bridge deck specimen was fabricated using the proposed precast deck system, and static and fatigue load tests were conducted to evaluate the structural behavior and the crack pattern of the deck. Leakage test of the deck joints was also conducted and finite element analysis was carried out to compare with the test results.

Structural performance of renovated masonry low bridge in Amasya, Turkey

  • Cakir, Ferit;Seker, Burcin S.
    • Earthquakes and Structures
    • /
    • v.8 no.6
    • /
    • pp.1387-1406
    • /
    • 2015
  • Masonry bridges are the vital components of transportation systems. Although these bridges were constructed centuries ago, they have served a purpose from ancient times to the present day. However, the bridges have needed local renovation and therefore have been rebuilt over different periods in many places. This study focuses on Low Bridge, which is an example of renovated masonry bridges in Turkey. It essentially assesses the structural behavior of the masonry bridge and investigates the integrity of the renovated components. For this purpose, the mechanical properties of the bridge material have been primarily evaluated with experimental tests. Then the static, modal and nonlinear time history analyses have been carried out with the use of finite element methods in order to investigate the structural behavior of the current form of the bridge.

Analysis of Mechanical Behavior of Nanowire by Molecular Dynamics Simulation (분자동역학을 이용한 나노 와이어의 역학적 거동 해석)

  • Lee, Byeong-Yong;Cho, Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.433-438
    • /
    • 2007
  • Mechanical behavior of copper Nanowire is investigated, An FCC Nanowire model composed of 1,408 atoms is used for NID simulation, Simulations are performed within NVT ensemble setting without periodic boundary conditions, Nose-Poincare MD algorithm is employed to guarantee preservation of Hamiltonian. Numerical tensile tests are carried out with constant strain rate, Stress-strain curve is constructed from the calculated Cauchy stresses and specified strain values, Non-linear behavior appears around $\varepsilon$=0.064, At this instance, starting of structural reorientations are observed.

  • PDF