• Title/Summary/Keyword: Structural and vibration analysis

Search Result 2,194, Processing Time 0.046 seconds

Instrumentation and Structural Health Monitoring of Bridges (교량구조물의 헬스모니터 링을 위한 진동계측)

  • 김두기;김종인;김두훈
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.5
    • /
    • pp.108-122
    • /
    • 2001
  • As bridge design is advancing toward the performance-based design. it becomes increasingly important to monitor and re-evaluate the long-term structural performance of bridges. Such information is essential in developing performance criteria for design. In this research. sensor systems for long-term structural performance monitoring have been installed on two highway bridges. Pre1iminary vibration measurement and data analysis have been performed on these instrumented bridges. On one bridge, ambient vibration data have been collected. based on which natural frequencies and mode shapes have been extracted using various methods and compared with those obtained by the preliminary finite element analysis. On the other bridge, braking and bumping vibration tests have been carried out using a water truck In addition to ambient vibration tests. Natural frequencies and mode shapes have been derived and the results by the breaking and bumping vibration tests have been compared. For the development of a three dimensional baseline finite element model, the new methodology using a neural network is proposed. The proposed one have been verified and applied to develop the baseline model of the bridge.

  • PDF

Computational Vibration and Characteristic Analyses for Tilt-Rotor Vehicle Considered 3-Dimensional Supporting Equipment Structures (탑재장비 3차원 지지구조 형상을 고려한 틸트로터 항공기 전산진동해석 및 특성분석)

  • Kim, Yu-Sung;Kim, Dong-Hyun;Kim, Dong-Man;Lee, Jung-Jin;Kim, Sung-Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1000-1007
    • /
    • 2007
  • In this study, structural vibration analyses of a smart unmanned aerial vehicle (UAV) have been conducted considering dynamic hub-loads of tilt rotor. Practical computational structural dynamics technique based on the finite element method is applied using MSC/NASTRAN. The present UAV(TR-S5-04) finite element model is constructed as a full three-dimensional configuration with different fuel conditions and tilting angles for helicopter, transient and airplane flight modes. In addition, the 3-dimensional supporting equipment structures of electronic devices are considered for vibration analysis. As the results of this study, transient structural displacements and accelerations are presented in detail. Moreover, vibration characteristics of structural parts and installed equipments are investigated for different fuel conditions and tilting angles.

  • PDF

Structural Dynamic Modification of Fixture by Antiresonance Frequency Analysis in Environmental Vibration Test Control (환경진동시험 제어에서 반공진 진동수해석에 의한 치구의 구조변경설계)

  • 김준엽;정의봉
    • Journal of KSNVE
    • /
    • v.5 no.4
    • /
    • pp.555-563
    • /
    • 1995
  • This paper proposes the method of antiresonance frequency analysis of multi-input multi-output system. The structural dynamic modification techniques by antiresonance frequency analysis are also applied to reduce the undertest at specimen attachment points on the fixture in environmental vibration test, which is resulted from the inconsistency of antiresonance frequencies at any specified points. Several computer simulations show that the proposed method can remove the undertest problem which is not removed in conventional vibration test control. And the effectiveness of the method is verified with the impact hammer excitation of aluminium fixture model.

  • PDF

Structural and Vibration Characteristics for the Scaffolding System of LNG Cargo Containment (LNG 화물창 비계 시스템의 구조해석 및 진동 특성)

  • Oh, B.J.;Ryu, B.J.;Lee, Y.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.6
    • /
    • pp.546-554
    • /
    • 2010
  • The paper deals with the structural analysis and vibration test for the scaffolding system of LNG cargo containment. The eight-stories scaffolding system has telescopic area, working area, coner area and storage area in real system. In the structural analysis, the maximum displacement and stress of the each floor for the scaffolding system are investigated by finite element method. In the vibrational analysis, the natural frequencies and mode shapes for 8-stories scaffolding system of the LNG cargo containment are investigated. In order to compare theoretical natural frequencies with experimental ones, small size of 2-step scaffolding structure is used, and the theoretical results for natural frequency have a good agreement with experimental ones.

A study on the estimation of an equivalent system of a local vibration system of a huge structure and the Optimum Structural Modification Method (거대 구조물의 국부진동계의 등가계 산출과 이를 이용한 최적구조변경법)

  • 황문주;박석주;이기문
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.364-369
    • /
    • 1997
  • It is very difficult to execute the vibration analysis of a huge structure, which takes up much time and expense. In this paper we intend to make the equivalent system of a local vibration system of a huge structure with a view to improving the dynamic characteristics and reducing time and expense. First of all, upper deck structure model is maded. And we perform the vibration analysis by the Substructure Synthesis Method and execute the exciting test for the upper deck structure model, and observe the coincidences of two results to confirm the reliability of the analyzing tools used. To make the equivalent system, we give boundary condition to sub-structure that want to be modified and execute the Sensitivity Analysis Method and the Optimum Structural Modification Method. And we execute the structural modification of the equivalent system.

  • PDF

Optimum study on wind-induced vibration control of high-rise buildings with viscous dampers

  • Zhou, Yun;Wang, DaYang;Deng, XueSong
    • Wind and Structures
    • /
    • v.11 no.6
    • /
    • pp.497-512
    • /
    • 2008
  • In this paper, optimum methods of wind-induced vibration control of high-rise buildings are mainly studied. Two optimum methods, genetic algorithms (GA) method and Rayleigh damping method, are firstly employed and proposed to perform optimum study on wind-induced vibration control, six target functions are presented in GA method based on spectrum analysis. Structural optimum analysis programs are developed based on Matlab software to calculate wind-induced structural responses. A high-rise steel building with 20-storey is adopted and 22 kinds of control plans are employed to perform comparison analysis to validate the feasibility and validity of the optimum methods considered. The results show that the distributions of damping coefficients along structural height for mass proportional damping (MPD) systems and stiffness proportional damping (SPD) systems are entirely opposite. Damping systems of MPD and GAMPD (genetic algorithms and mass proportional damping) have the best performance of reducing structural wind-induced vibration response and are superior to other damping systems. Standard deviations of structural responses are influenced greatly by different target functions and the influence is increasing slightly when higher modes are considered, as shown fully in section 5. Therefore, the influence of higher modes should be considered when strict requirement of wind-induced vibration comfort is needed for some special structures.

Structural Intensity Analysis of Plate Structures Using Modal Analysis (모달해석기법을 이용한 판 구조물의 진동인텐시티 해석)

  • 정상민;조대승;김사수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.319-326
    • /
    • 1998
  • Structural intensity of plates experiencing bending vibration is analytically evaluated using the modal analysis based on the assumed mode method. In the analysis, material internal loss and localized damping are considered. The power obtained by structural intensity integration over the circle containing the excitation source is compared with the power injected into plates to verify the accuracy of the presented method and; to evaluate the convergence of mode superposition. The intensity integration is carried out varying the circle radius and the integral step to investigate their effects in case of the power estimation using structural intensities. In addition, the dominant component among internal forces in the energy transfer by the bending vibration of a stiffened plate is investigated.

  • PDF

A Study on Vibration Analysis for the Slab of Apartment Building (아파트 슬래브의 진동평가에 관한 연구)

  • Park Kang-Geun;Kim Yong-Tae;Choi Young-Wha
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.333-340
    • /
    • 2006
  • In these days the floor vibration is beginning to make its appearance of the environmental dispute in apartment building. Standard floor system are suggested for the settlement of this issue by government. The sound of floor impact sound is needed to secure comfortable quality in housing. Also, it is required an accurate analysis and a proper evaluation for floor vibration. Refine model is necessary for the floor system of housing to analyze accurately the floor vibration. But this refine model is not efficient because it is required so much running time for vibration analysis and it is difficult of modeling of standard floor slab. In this paper, new modeling methods of standard floor slab are proposed for the accurate rigidity evaluation. By using the new modeling method, the accurate vibration response can be obtained and can accurately evaluate the rigidity of standard floor system with resilient materials. Therefore the proposed modeling method is of practical use for vibration analysis of floor system of apartment building.

  • PDF

A Study on the estimation of an equivalent system of a local vibration system of a huge structure and the Optimum Structural Modification Method (거대 구조물의 국부진동계의 등가계 산출과 이를 이용한 최적구조변경법)

  • 박석주;황문주;오창근;김성우
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1998.04a
    • /
    • pp.120-127
    • /
    • 1998
  • It is very difficult to execute the vibration analysis of a huge strucutre, which takes up much time and expense. In this paper we intend to make the equivalent system of a local vibration system of a huge structure with a view to improving the dynamic characteristics and reducing time and expense. First of all, upper deck structure model is maded. And we perform the vibration analysis by the Substructure Synthesis Method and execute the exciting test for the upper deck structure model, and observe the coincidences of two results to confirm the reliability of the analyzing tools used. To make the equivalent system, we give boundary condition to sub-structure that want to be modified and execute the Sensitivity Analysis Method and the Optimum Structural Modification Method. And we execute the structural modification of the equivalent system.. The following can be found from this study. 1. The analytical results are generally coincident with each other. 2. The equivalent system of the superstructure model can be easily obtained using the sensitivity analysis metho and the optimum structural modification method. 3. The structural modification using the equivalent system can be obtained good results above 90% of object value.

  • PDF

Sensitivity Analysis of Anti-resonance Frequency for Vibration Test Control of a Fixture

  • Jeong, Weui-Bong;Yoo, Wan-Suk;Kim, Jun-Yeop
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1732-1738
    • /
    • 2003
  • The test specimen in environmental vibration test is connected to the fixture through several attachment points. The forces generated by the shaker must be transmitted equally to all attachment points. The forces transmitted to attachment points, however, are different because of the flexural vibration of the fixture. The variations of the transmitted force cause the under-test, especially at anti-resonance frequencies, in vibration test control. Anti-resonance frequencies at the attachment points of the fixture must be same in order to avoid the under-test in vibration test control. The structural modification of the fixture is needed so that anti-resonance frequencies at attachment points have the same value. In this paper, the method to calculate the anti-resonance frequencies and those sensitivities is presented. This sensitivity analysis is applied to the structural modification of the fixture excited at multi-points by the shaker. The antiresonance frequencies at the attachment points of the fixture can have the same value after structural modification, and the under-test in the vibration test control can be removed. Several computer simulations show that the proposed method can remove the under-tests, which are not removed in conventional vibration test control.