• Title/Summary/Keyword: Structural and Reliability Importance

Search Result 145, Processing Time 0.031 seconds

The Structural Analysis of the Variables among Clothes Consumption Value, Need for Uniqueness, Use Information Sources Related to Importance of Apparel Product Attributes and Store Attributes (의복소비가치, 독특성 욕구, 정보원 활용이 의류제품속성 및 점포속성 중요도에 영향을 미치는 변인 간의 구조 분석)

  • Park, Hye-Jung;Yoo, Tai-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.36 no.8
    • /
    • pp.802-813
    • /
    • 2012
  • This study establishes how the clothes consumption value, need for uniqueness, and use information sources could influence the importance of apparel product attributes and the importance of store attributes. Data were collected through a survey of adults in their 20's and 30's with 48 questionnaires for statistical analysis. The collected data were processed with the programs AMOS 16.0 and SPSS 18.0 for windows and reliability analysis, correlation analysis, factor analysis, and structural equation analysis were conducted to analyze the data. The results in this research are follows. First, the clothes consumption value influences the importance of apparel product attributes both directly and indirectly and the importance of store attributes indirectly through use information sources. Second, the need for uniqueness influences the importance of apparel product attributes indirectly and importance of store attributes both directly and indirectly through clothes consumption value and use information sources. The implications of these findings and suggestions for future study are also discussed.

A novel reliability analysis method based on Gaussian process classification for structures with discontinuous response

  • Zhang, Yibo;Sun, Zhili;Yan, Yutao;Yu, Zhenliang;Wang, Jian
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.771-784
    • /
    • 2020
  • Reliability analysis techniques combining with various surrogate models have attracted increasing attention because of their accuracy and great efficiency. However, they primarily focus on the structures with continuous response, while very rare researches on the reliability analysis for structures with discontinuous response are carried out. Furthermore, existing adaptive reliability analysis methods based on importance sampling (IS) still have some intractable defects when dealing with small failure probability, and there is no related research on reliability analysis for structures involving discontinuous response and small failure probability. Therefore, this paper proposes a novel reliability analysis method called AGPC-IS for such structures, which combines adaptive Gaussian process classification (GPC) and adaptive-kernel-density-estimation-based IS. In AGPC-IS, an efficient adaptive strategy for design of experiments (DoE), taking into consideration the classification uncertainty, the sampling uniformity and the regional classification accuracy improvement, is developed with the purpose of improving the accuracy of Gaussian process classifier. The adaptive kernel density estimation is introduced for constructing the quasi-optimal density function of IS. In addition, a novel and more precise stopping criterion is also developed from the perspective of the stability of failure probability estimation. The efficiency, superiority and practicability of AGPC-IS are verified by three examples.

Probabilistic finite Element Analysis of Eigenvalue Problem- Buckling Reliability Analysis of Frame Structure- (고유치 문제의 확률 유한요소 해석)

  • 양영순;김지호
    • Computational Structural Engineering
    • /
    • v.4 no.2
    • /
    • pp.111-117
    • /
    • 1991
  • The analysis method calculating the mean and standard deviation for the eigenvalue of complicated structures in which the limit state equation is implicitly expressed is formulated and applied to the buckling analysis by combining probabilistic finite element method with direct differential method which is a kind of sensitivity analysis technique. Also, the probability of buckling failure is calculated by combining classical reliability techniques such a MVFOSM and AFOSM. As random variables external load, elastic modulus, sectional moment of inertia and member length are chosen and Parkinson's iteration algorithm in AFOSM is used. The accuracy of the results by this study is verified by comparing the results with the crude Monte Carlo simulation and Importance Sampling Method. Through the case study of some structures the important aspects of buckling reliability analysis are discussed.

  • PDF

Link Importance Measures for Flow Network Systems (가변용량 네트워크 시스템에서의 링크 중요도에 관한 척도)

  • Lee, Seung-Min
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.6
    • /
    • pp.937-943
    • /
    • 2009
  • A network with variable link capacities is considered to be in a functioning state if it can transmit a maximum flow which is greater than or equal to a specified amount of flow. The links are independent and either function or fail with known probability. No flow can be transmitted through a failed link. In this paper, we consider the measures of importance of a link in such networks. We define the structural importance and reliability importance, with respect to capacity, of a link when the required amount of flow is given. We also present the performance importance with respect to capacity. Numerical examples are presented as well for illustrative purpose.

Stochastic control approach to reliability of elasto-plastic structures

  • Au, Siu-Kui
    • Structural Engineering and Mechanics
    • /
    • v.32 no.1
    • /
    • pp.21-36
    • /
    • 2009
  • An importance sampling method is presented for computing the first passage probability of elasto-plastic structures under stochastic excitations. The importance sampling distribution corresponds to shifting the mean of the excitation to an 'adapted' stochastic process whose future is determined based on information only up to the present. A stochastic control approach is adopted for designing the adapted process. The optimal control law is determined by a control potential, which satisfies the Bellman's equation, a nonlinear partial differential equation on the response state-space. Numerical results for a single-degree-of freedom elasto-plastic structure shows that the proposed method leads to significant improvement in variance reduction over importance sampling using design points reported recently.

Probabilistic Finite Element Analysis of Eigenvalue Problem(Buckling Reliability Analysis of Frame Structure) (고유치 문제의 확률 유한요소 해석(Frame 구조물의 좌굴 신뢰성 해석))

  • 양영순;김지호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.10a
    • /
    • pp.22-27
    • /
    • 1990
  • Since an eigenvalue problem in structural analysis has been recognized as an important process for the assessment of structural strength, it is usually to be carried out the eigenvalue analysis or buckling analysis of structures when the compression behabiour of the member is dorminant. In general, various variables involved in the eigenvalue problem have also shown their variability. So it is natural to apply the probabilistic analysis into such problem. Since the limit state equation for the eigenvalue analysis or buckling reliability analysis is expressed implicitly in terms of random variables involved, the probabilistic finite element method is combined with the conventional reliability method such as MVFOSM and AFOSM for the determination of probability of failure due to buckling. The accuracy of the results obtained by this method is compared with results from the Monte Carlo simulations. Importance sampling method is specially chosen for overcomming the difficulty in a large simulation number needed for appropriate accurate result. From the results of the case study, it is found that the method developed here has shown good performance for the calculation of probability of buckling failure and could be used for checking the safety of the calculation of probability of buckling failure and could be used for checking the safely of frame structure which might be collapsed by either yielding or buckling.

  • PDF

Structural System Reliability Analysis of Semi-rigid Connected Frame - Focused on Plastic Greenhouse - (반강결 프레임 구조물의 시스템 신뢰성 해석 - 비닐하우스를 중심으로 -)

  • Lee, Sangik;Lee, Jonghyuk;Jeong, Youngjoon;Kim, Dongsu;Seo, Byunghun;Seo, Yejin;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.5
    • /
    • pp.67-77
    • /
    • 2022
  • Recently, the trend in structural analysis and design is moving towards the development of reliable system. The reliability-based method defines various limit states related to usability and failure, thereby enabling multiple levels of design according to the importance of a structure. Meanwhile, an actual structure is composed of a set of several elements, and particularly, a frame type is composed of a system in which the members are connected each other. At this time, the actual connection between members is in a semi-rigid condition, not in complete rigid or hinged. This semi-rigid is found in several structures, especially in agricultural facilities designed with lightweight materials. In this study, a system reliability analysis technique for frame structure was established, and applied to an analysis of the semi-rigid connection. Various conditions of correlation were applied to reflect the connectivity between members, and through this, the limitations of existing structural analysis method and the behavioral characteristics of structure were analyzed. The failure probability of the frame member component and the overall structure system was significantly different in consideration of the semi-rigid connection. In addition, it was evaluated that the behavior of structure can be more accurately analyzed if the correlation according to the position of members in a system is further investigated.

Evaluation of seismic reliability and multi level response reduction factor (R factor) for eccentric braced frames with vertical links

  • Mohsenian, Vahid;Mortezaei, Alireza
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.537-549
    • /
    • 2018
  • Using vertical links in eccentric braced frames is one of the best passive structural control approaches due to its effectiveness and practicality advantages. However, in spite of the subject importance there are limited studies which evaluate the seismic reliability and response reduction factor (R-factor) in this system. Therefore, the present study has been conducted to improve the current understanding about failure mechanism in the structural systems equipped with vertical links. For this purpose, following definition of demand and capacity response reduction factors, these parameters are computed for three different buildings (4, 8 and 12 stories) equipped with this system. In this regards, pushover and incremental dynamic analysis have been employed, and seismic reliability as well as multi-level response reduction factor according to the seismic demand and capacity of the frames have been derived. Based on the results, this system demonstrates high ductility and seismic energy dissipation capacity, and using the response reduction factor as high as 8 also provides acceptable reliability for the frame in the moderate and high earthquake intensities. This system can be used in original buildings as lateral load resisting system in addition to seismic rehabilitation of the existing buildings.

Beyond Categories: A Structural Analysis of the Social Representations of Information Users' Collective Perceptions on 'Relevance'

  • Ju, Boryung;O'Connor, Daniel O.
    • Journal of Information Science Theory and Practice
    • /
    • v.1 no.2
    • /
    • pp.16-35
    • /
    • 2013
  • Relevance has a long history of scholarly investigation and discussion in information science. One of its notable concepts is that of 'user-based' relevance. The purpose of this study is to examine how users construct their perspective on the concept of relevance; to analyze what the constituent elements (facets) of relevance are, in terms of core-periphery status; and to compare the difference of constructions of two groups of users (information users vs. information professionals) as applied with a social representations theory perspective. Data were collected from 244 information users and 123 information professionals through use of a free word association method. Three methods were employed to analyze data: (1) content analysis was used to elicit 26 categories (facets) of the concept of relevance; (2) structural analysis of social representations was used to determine the core-periphery status of those facets in terms of coreness, sum of similarity, and weighted frequency; and, (3) maximum tree analysis was used to present and compare the differences between the two groups. Elicited categories in this study overlap with the ones from previous relevance studies, while the findings of a core-periphery analysis show that Topicality, User-needs, Reliability/Credibility, and Importance are configured as core concepts for the information user group, while Topicality, User-needs, Reliability/Credibility, and Currency are core concepts for the information professional group. Differences between the social representations of relevance revealed that Topicality was similar to User-needs and to Importance. Author is closely related to Title while Reliability/Credibility is linked with Currency. Easiness/Clarity is similar to Accuracy. Overall, information users and professionals function with a similar social collective of shared meanings for the concept of relevance. The overall findings identify the core and periphery concepts of relevance and their relationships in terms of coreness, similarity, and weighted frequency.

Structural analysis and design using generative AI

  • Moonsu Park;Gyeongeun Bong;Jungro Kim;Gihwan Kim
    • Structural Engineering and Mechanics
    • /
    • v.91 no.4
    • /
    • pp.393-401
    • /
    • 2024
  • This study explores the integration of the generative AI, specifically ChatGPT (GPT-4o), into the field of structural analysis and design using the finite element method (FEM). The research is conducted in two main parts: structural analysis and structural design. For structural analysis, two scenarios are examined: one where the FEM source code is provided to ChatGPT and one where it is not. The AI's ability to understand, process, and accurately perform finite element analysis in both scenarios is evaluated. Additionally, the application of ChatGPT in structural design is investigated, including design modifications and parameter sensitivity analysis. The results demonstrate the potential of the generative AI to assist in complex engineering tasks, suggesting a future where AI significantly enhances efficiency and innovation in structural engineering. However, the study also highlights the importance of ensuring the accuracy and reliability of AI-generated results, particularly in safety-critical applications.