• Title/Summary/Keyword: Structural analysis of a platform

Search Result 284, Processing Time 0.025 seconds

Effects of the Flexibility on the Structural Responses of a Tension Leg Platform (인장계류식 해양구조물의 구조응답에 미치는 굽힘강성의 영향)

  • Lee, Chang-Ho;Lee, Soo-Lyong
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.38-44
    • /
    • 2007
  • The structural response characteristics of Tension leg platforms(TLPs) in waves are examined for presenting the basic data for structural design of TLPs. The numerical approach is based on a combination of the three dimensional source distribution method and the structural response analysis method, in which the superstructure of TLP is assumed to be flexible instead of rigid. Hydrodynamic and hydrostatic forces on the submerged surface of a TLP have been accurately calculated by excluding the assumption of the slender body theory. The hydrodynamic interactions among TLP members, such as columns and pontoons, and the structural damping are included in structural analysis. The mooring forces are estimated as the sum of pretension of tendons and variational tension due to longitudinal displacements. Stiffness matrices of elastic beam elements connecting nodes are formulated by ordinary method of three dimensional frame analysis. The equation of motion about the whole structure is obtained by the sum of forces and moments acting on each nodes.

Development of S/W Platform for the Structural Design System Based on Design Database (설계정보 데이터베이스를 기반으로 하는 구조설계 S/W Platform의 개발)

  • 이대희;윤성수;이정재;김한중
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.4
    • /
    • pp.79-88
    • /
    • 2001
  • Agricultural facilities can be designed by conceptual preliminary primary and detailed design stages. because each stage has a different objective, it must be applied to dissimilar design and analysis level. Engineers have to judge from evaluation that is estimated agricultural resources in the conceptual design stage. Methods of computer aided design are achieved to individual functions however it is inefficient to perform entire processes of design and hard to systematically accumulate results o design. Study on the integrated structural design system has been continued. but those system have adopted “closed architecture”which is known to inflexible method for developing applications. In this study the design platform is an environment that can support to integrated design system independently and an design platform is proposed by analyzing design processes using object oriented method. The concepts of software platform have resulted from several practical ideas, OOA/OOP and related some points. This paper aims at developing the software platform of a software environment to support the design phases of the agricultural facilities.

  • PDF

Numerical analysis for structure-pile-fluid-soil interaction model of fixed offshore platform

  • Raheem, Shehata E. Abdel;Aal, Elsayed M. Abdel;AbdelShafy, Aly G.A.;Mansour, Mahmoud H.;Omar, Mohamed
    • Ocean Systems Engineering
    • /
    • v.10 no.3
    • /
    • pp.243-266
    • /
    • 2020
  • In-place analysis for offshore platforms is required to make proper design for new structures and true assessment for existing structures. In addition, ensure the structural integrity of platforms components under the maximum and minimum operating loads and environmental conditions. In-place analysis was carried out to verify the robustness and capability of structural members with all appurtenances to support the applied loads in either operating condition or storm conditions. A nonlinear finite element analysis is adopted for the platform structure above the seabed and the pile-soil interaction to estimate the in-place behavior of a typical fixed offshore platform. The SACS software is utilized to calculate the natural frequencies of the model and to obtain the response of platform joints according to in-place analysis then the stresses at selected members, as well as their nodal displacements. The directions of environmental loads and water depth variations have an important effect on the results of the in-place analysis behavior. The influence of the soil-structure interaction on the response of the jacket foundation predicts is necessary to estimate the loads of the offshore platform well and real simulation of offshore foundation for the in-place analysis. The result of the study shows that the in-place response investigation is quite crucial for safe design and operation of offshore platform against the variation of environmental loads.

Fluctuating wind and wave simulations and its application in structural analysis of a semi-submersible offshore platform

  • Ma, Jin;Zhou, Dai;Han, Zhaolong;Zhang, Kai;Bao, Yan;Dong, Li
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.624-637
    • /
    • 2019
  • A semi-submersible offshore platform always operates under complex weather conditions, especially wind and waves. It is vital to analyze the structural dynamic responses of the platform in short-term sea states under the combined wind and wave loads, which touches upon three following work. Firstly, a derived relationship between wind and waves reveals a correlation of wind velocity and significant wave height. Then, an Improved Mixture Simulation (IMS) method is proposed to simulate the time series of wind/waves accurately and efficiently. Thus, a wind-wave scatter diagram is expanded from the traditional wave scatter diagram. Finally, the time series of wind/wave pressures on the platform in the short-term sea states are converted by Workbench-AQWA. The numerical results demonstrate that the proposed numerical methods are validated to be applicable for wind and wave simulations in structural analyses. The structural dynamic responses of the platform members increase with the wind and wave strength. In the up-wind and wave state, the stresses on the deck, the connections between deck and columns, and the connection between columns and pontoons are relatively larger under the vertical bending moment. These numerical methods and results are wished to provide some references for structural design and health monitoring of several offshore platforms.

Dynamic Analysis of Boom Using Finite Element Method (유한 요소법을 이용한 붐대의 동특성 해석)

  • Han, Su-Hyun;Kim, Byung-Jin;Hong, Dong-Pyo;Tae, Sin-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.987-991
    • /
    • 2005
  • The Aerial platform Truck is widely used for work in high place with the aerial platform. The most important thing is that worker's safety and worker must be able to work with trustworthiness so it needs to be verified its stiffness, deflection of boom, and dynamic condition concerned with a rollover accident. It should have an analytical exactitude because it is directly linked with the worker safety. In this point, we are trying to develop a proper CAE analysis model concerned with a rollover safety, bending stress and deflection for load. The Aerial platform Truck have a dynamic characteristics by load and moving of boom in the work field, so its static and dynamic strength analysis, structural mechanics are very important. Therefore, we evaluate the safety of each boom to calculating its stress, deflection. A computer simulation program is used widely for doing applying calculation of stiffness and structural mechanics, then finally trying to find a optimum design of the Aerial platform Truck.

  • PDF

Seismic and vibration mitigation for the A-type offshore template platform system

  • Lee, Hsien Hua
    • Structural Engineering and Mechanics
    • /
    • v.6 no.3
    • /
    • pp.347-362
    • /
    • 1998
  • In this study an improved design method for the traditional A-type(or V-type) offshore template platform system was proposed to mitigate the vibration induced by the marine environmental loadings and the strong ground motions of earthquakes. A newly developed material model was combined into the structural system and then a nonlinear dynamic analysis in the time domain was carried out. The analysis was focused on the displacement and rotation induced by the input wave forces and ground motions, and the mitigation effect for these responses was evaluated when the viscoelastic damping devices were applied. The wave forces exerted on the offshore structures are based on Stokes fifth-order wave theory and Morison equation for small body. A step by step integration method was modified and used in the nonlinear analysis. It was found that the new design approach enhanced with viscoelastic dampers was efficient on the vibration mitigation for the structural system subjected to both the wave motion and the strong ground motion.

Development of a Structural Optimal Design Code Using Response Surface Method Implemented on a CAD Platform (반응표면법을 이용한 구조물 최적설계 프로그램의 개발)

  • Yeom, Kee-Sun;Huh, Jae-Sung;Kwak, Byung-Man
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.580-585
    • /
    • 2001
  • A response surface method(RSM) is utilized for structural optimization and implemented on a parametric CAD platform. Once an approximation of the performance function is made, no formal design sensitivity analysis is necessary. The approximation gives the designer the sensitivity information and furthermore intuition on the performance functions. The scheme for the design of experiment chosen for the RSM has a large influence on the accuracy of converged solutions and the amount of computation. The D-optimal design criterion as implemented in this paper is found efficient for the structural optimization. The program is developed on a parametric CAD platform and tested using several shape design problems of such as a torque arm and a belt clip. It is observed that the RSM used provides a faster convergence than other approximation methods for design sensitivity.

  • PDF

Reliability-Based Design Optimization of 130m Class Fixed-Type Offshore Platform (신뢰성 기반 최적설계를 이용한 130m급 고정식 해양구조물 최적설계 개발)

  • Kim, Hyun-Seok;Kim, Hyun-Sung;Park, Byoungjae;Lee, Kangsu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.5
    • /
    • pp.263-270
    • /
    • 2021
  • In this study, a reliability-based design optimization of a 130-m class fixed-type offshore platform, to be installed in the North Sea, was carried out, while considering environmental, material, and manufacturing uncertainties to enhance its structural safety and economic aspects. For the reliability analysis, and reliability-based design optimization of the structural integrity, unity check values (defined as the ratio between working and allowable stress, for axial, bending, and shear stresses), of the members of the offshore platform were considered as constraints. Weight of the supporting jacket structure was minimized to reduce the manufacturing cost of the offshore platform. Statistical characteristics of uncertainties were defined based on observed and measured data references. Reliability analysis and reliability-based design optimization of a jacket-type offshore structure were computationally burdensome due to the large number of members; therefore, we suggested a method for variable screening, based on the importance of their output responses, to reduce the dimension of the problem. Furthermore, a deterministic design optimization was carried out prior to the reliability-based design optimization, to improve overall computational efficiency. Finally, the optimal design obtained was compared with the conventional rule-based offshore platform design in terms of safety and cost.

The Influence of a Mobile Platform for Food Delivery Services on Perceived Ease of Use and Customer Satisfaction (모바일 배달 전문 플랫폼의 서비스 특성이 지각된 용이성과 고객 만족도에 미치는 영향)

  • Kim, Gyu-sik;Choi, Jae-boong
    • Journal of Information Technology Services
    • /
    • v.18 no.5
    • /
    • pp.119-132
    • /
    • 2019
  • This study aims to analyze how specific features of a mobile platform such as economic feasibility, interactivity, safety, and design are correlated with perceived ease of use and customer satisfaction, targeting those who purchase delivery food on a mobile platform dedicated to delivery services. A survey was conducted on customers who had bought delivery food on a mobile platform and the data collection was conducted from August 19, 2019 to September 18, 2019, using 300 mobile platform service users. A total of 300 copies were retrieved. 249 valid samples of 300 copies were analyzed with SPSS 23.0 and AMOS 23, and In addition, programs including SPSS and AMOS were used for the analysis of frequency, confirmatory factor, reliability and validity, correlation and structural equation model. Major findings of such analysis are as follows. First, design characteristic of a mobil platform had relevant impacts on perceived ease of use. However, economic feasibility, interactivity, and safety did not significantly affect perceived ease of use. Second, perceived ease of use had a significantly influenced on the extent of customer satisfaction. Hence, from practical and academical point of views based on the results of this analysis, this study is expected to provide directions and some practical and useful implications for a mobile platform for food delivery services.

Structural Analysis of Floating Offshore Wind Turbine Tower Based on Flexible Multibody Dynamics (탄성 다물체계 동역학을 기반으로 한 부유식 해상 풍력 발전기 타워의 구조 해석)

  • Park, Kwang-Phil;Cha, Ju-Hwan;Ku, Namkug;Jo, A-Ra;Lee, Kyu-Yeul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1489-1495
    • /
    • 2012
  • In this study, we perform the structural analysis of a floating offshore wind turbine tower by considering the dynamic response of the floating platform. A multibody system consisting of three blades, a hub, a nacelle, the platform, and the tower is used to model the floating wind turbine. The blades and the tower are modeled as flexible bodies using three-dimensional beam elements. The aerodynamic force on the blades is calculated by the Blade Element Momentum (BEM) theory with hub rotation. The hydrostatic, hydrodynamic, and mooring forces are considered for the platform. The structural dynamic responses of the tower are simulated by numerically solving the equations of motion. From the simulation results, the time history of the internal forces at the nodes, such as the bending moment and stress, are obtained. In conclusion, the internal forces are compared with those obtained from static analysis to assess the effects of wave loads on the structural stability of the tower.