• Title/Summary/Keyword: Structural adhesive

Search Result 314, Processing Time 0.021 seconds

Quantitative Nondestructive Evaluation of Bonded Joints utilizing Pulse-Echo Ultrasonic Test (펄스-에코법을 이용한 접착접합 시험편의 정량적 비파괴 평가)

  • Oh, Seung-Kyu;Hwang, Young-Taek;Lee, Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.157-164
    • /
    • 2003
  • The pulse-echo method is one of the most widely used ultrasonic techniques for application of nondestructive evaluation. Particularly, quantitative nondestructive evaluation of defects has been considered more important to assure the reliability and the safety of structure. Frequency energy in adhesive joints is based on the ultrasonic wave analysis. The attenuation coefficient upon wave amplitude and the frequency energy that is expressed in the term of wave pressure amplitude were utilized for the primary wave experiment. By means of a control experiment, it was confirmed that the variation of the frequency energy in adhesive joints depends on transition by stress variation. In this paper, the ultrasonic characteristics were measured for single lap joint and Double Cantilever Beam specimen with different fracture modes that was subjected to stress. Consequently, the data that was obtained from the adhesive specimen was analytically compared to the fracture mechanics parameter

Bio-Inspired Micro/Nanostructures for Functional Applications: A Mini-Review

  • Young Jung;Inkyu Park
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.31-38
    • /
    • 2023
  • Three-dimensional (3D) micro/nanostructures based on soft elastomers have received extensive attention in recent years, owing to their potential and advanced applicability. Designing and fabricating 3D micro/nanostructures are crucial for applications in diverse engineering fields, such as sensors, harvesting devices, functional surfaces, and adhesive patches. However, because of their structural complexity, fabricating soft-elastomer-based 3D micro/nanostructures with a low cost and simple process remains a challenge. Bio-inspired designs that mimic natural structures, or replicate their micro/nanostructure surfaces, have greatly benefited in terms of low-cost fabrication, scalability, and easy control of geometrical parameters. This review highlights recent advances in 3D micro/nanostructures inspired by nature for diverse potential and advanced applications, including flexible pressure sensors, energy-harvesting devices based on triboelectricity, superhydrophobic/-philic surfaces, and dry/wet adhesive patches.

An Experimental Study on the Shear Strength of Chemical Anchors Embedded into Non Cracking Plain Concrete (비균열 무근콘크리트에 매입된 케미컬 앵커의 전단내력에 관한 실험적 연구)

  • Seo, Seong-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.21-29
    • /
    • 2017
  • The use of post installed anchors with adhesive type has lately been increasing when it is necessary to repair, reinforce, or remodel structures. This method provides flexibility and simplicity for construction of structural members that require adhering or fixing. Meanwhile, strength evaluation of anchors with expansion type among post installed anchors systems has nearly reached setting up stage like design code through continual experimental studies for the last ten years, but analyses or experimental studies on anchor system with adhesive type are not yet sufficient. Accordingly, the designers and builders of korea depend on foreign design codes since there are no exact domestic design code they could credit. In this study, the objectives are investigating the effects on adhesive strength of anchors embedded into plain concrete by shear experiments of anchors with variables such as edge distance, anchor interval, and load direction and supplying basic data for enactment of domestic design code.

Nonlinear Iterative Solution for Adhesively Bonded Tubular Single Lap Joints with Nonlinear Shear Properties (튜브형 단면겹치기 접착조인트의 비선형 반복연산해에 관한 연구)

  • 이수정;이대길
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1651-1656
    • /
    • 1995
  • The adhesively bonded tubular single lap joint shows large nonlinear behavior in the loaddisplacement relation, because structural adhesives for the joint are usually rubber toughened, which endows adhesives with nonlinear shear properties. since the majority of load transfer of the adhesively bonded tubular single lap joint is accomplished by the nonlinear behavior of the adhesive, its torque transmission capability should be calculated incorporating nonlinear shear properties. However, both the analytic and numerical analyses become complicated if the nonlinear shear properties of the adhesive are included during the calculation of torque transmission capabilities. In this paper, in order to obtain the torque transmission capabilities easily, an iterative solution which includes the nonlinear shear properties of the adhesive was derived using the analytic solution with the linear shear properties of the adhesive. Since the iterative solution can be obtained very fast due to its simplicity, it has been found that it can be used in the design of the adhesively bonded tubular single lap joint.

Evaluations of lap shear and peel strength for epoxy and polyurethane adhesive bonded Triplex sheets at cryogenic temperatures (극저온에서 우레탄과 에폭시 접착제로 접착된 트리플엑스의 전단강도과 박리 강도 평가)

  • Shon, Min-Young
    • Composites Research
    • /
    • v.24 no.3
    • /
    • pp.39-45
    • /
    • 2011
  • Adhesive joints are widely used for structural joining applications in various fields and environmental conditions. Polyurethane (PU) and Epoxy adhesives are now being used for liquefied natural gas (LNG) carriers at cryogenic temperatures. This paper presents a comprehensive evaluation of epoxy and PU adhesive bonds between Triplex sheets at normal and cryogenic temperatures. The most significant result of this study is that for all adhesives tested, there is a significant decrease in peel strength at cryogenic temperatures. However, the reasons for the decrease in peel strength for epoxy and PU adhesives differ. Consequently, PU adhesives can be considered better suited for use in applications requiring high bonding performance at cryogenic conditions, such as in LNG carriers.

Effect of stacking sequence of the bonded composite patch on repair performance

  • Beloufa, Hadja Imane;Ouinas, Djamel;Tarfaoui, Mostapha;Benderdouche, Noureddine
    • Structural Engineering and Mechanics
    • /
    • v.57 no.2
    • /
    • pp.295-313
    • /
    • 2016
  • In this study, the three-dimensional finite element method is used to determine the stress intensity factor in Mode I and Mixed mode of a centered crack in an aluminum specimen repaired by a composite patch using contour integral. Various mesh densities were used to achieve convergence of the results. The effect of adhesive joint thickness, patch thickness, patch-specimen interface and layer sequence on the SIF was highlighted. The results obtained show that the patch-specimen contact surface is the best indicator of the deceleration of crack propagation, and hence of SIF reduction. Thus, the reduction in rigidity of the patch especially at adhesive layer-patch interface, allows the lowering of shear and normal stresses in the adhesive joint. The choice of the orientation of the adhesive layer-patch contact is important in the evolution of the shear and peel stresses. The patch will be more beneficial and effective while using the cross-layer on the contact surface.

Elastic analysis effect of adhesive layer characteristics in steel beam strengthened with a fiber-reinforced polymer plates

  • Daouadji, Tahar Hassaine;Hadji, Lazreg;Meziane, Mohamed Ait Amar;Bekki, Hadj
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.83-100
    • /
    • 2016
  • In this paper, the problem of interfacial stresses in steel beams strengthened with a fiber reinforced polymer plates is analyzed using linear elastic theory. The analysis is based on the deformation compatibility approach developed by Tounsi (2006) where both the shear and normal stresses are assumed to be invariant across the adhesive layer thickness. The analysis provides efficient calculations for both shear and normal interfacial stresses in steel beams strengthened with composite plates, and accounts for various effects of Poisson's ratio and Young's modulus of adhesive. Such interfacial stresses play a fundamental role in the mechanics of plated beams, because they can produce a sudden and premature failure. The analysis is based on equilibrium and deformations compatibility approach developed by Tounsi (2006). In the present theoretical analysis, the adherend shear deformations are taken into account by assuming a parabolic shear stress through the thickness of both the steel beam and bonded plate. The paper is concluded with a summary and recommendations for the design of the strengthened beam.

Updates on the treatment of adhesive capsulitis with hydraulic distension

  • Jang Hyuk, Cho
    • Journal of Yeungnam Medical Science
    • /
    • v.38 no.1
    • /
    • pp.19-26
    • /
    • 2021
  • Adhesive capsulitis of the shoulder joint is a common disease characterized by pain at the insertional area of the deltoid muscle and decreased range of motion. The pathophysiological process involves fibrous inflammation of the capsule and intraarticular adhesion of synovial folds leading to capsular thickening and contracture. Regarding the multidirectional limitation of motion, a limitation in external rotation is especially prominent, which is related to not only global fibrosis but also to a localized tightness of the anterior capsule. Ultrasound and magnetic resonance imaging studies can be applied to rule out other structural lesions in the diagnosis of adhesive capsulitis. Hydraulic distension of the shoulder joint capsule provides pain relief and an immediate improvement in range of motion by directly expanding the capsule along with the infusion of steroids. However, the optimal technique for hydraulic distension is still a matter of controversy, with regards to the infusion volume and rupture of the capsule. By monitoring the real-time pressure-volume profile during hydraulic distension, the largest possible fluid volume can be infused without rupturing the capsule. The improvement in clinical outcomes is shown to be greater in capsule-preserved hydraulic distension than in capsule-ruptured distension. Moreover, repeated distension is possible, which provides additional clinical improvement. Capsule-preserved hydraulic distension with maximal volume is suggested to be an efficacious treatment option for persistent adhesive capsulitis.

The effect of CFRP-concrete bond mechanism on dynamic parameters of repaired concrete girders

  • Fayyadh, Moatasem M.;Razak, Hashim A.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.343-354
    • /
    • 2022
  • An understanding of the mechanism of concrete girders repaired with CFRP plates and its influence on the dynamic parameters is presented in this paper. Dynamic parameters are governed by the relationship with the physical properties of concrete girders and CFRP plates as well as the adhesive layer between them. A brief explanation of the mechanism of the composite action of concrete girders repaired with CFRP is also given in this paper. Experimental work was carried out to validate the theory of the composite action. The results show a decrease in the modal parameters of CFRP repaired girders that were turned over during the repair procedure, which contrasts with the proven static-based results that CFRP plates increase the stiffness of repaired girders. The composite action theory has explained the results based on the tension and compression forces' growth at the adhesive layer between the CFRP plates and girder surface during the repair procedure. Other girders were prepared and repaired without turning over in order to avoid tension and compression forces at the adhesive layer. The experimental results show an increase in the dynamic parameters of CFRP repaired girders that were not turned over during the repair procedure, which aligns with the static-based results. The study concludes that the dynamic parameters are excellent indicators for the assessment of CFRP repaired concrete girders. The study also suggests that researchers should not turn over damaged concrete girders to repair them with CFRP plates if they intend to study the dynamic parameters, in order to avoid the proposed composite action effect on modal parameters.

An Experimental Study for Reinforcement Effect of Adhesive Stiffeners Depending on the Aspect Ratio of Masonry Wall (조적벽체의 형상비에 따른 접착형 보강재의 보강효과에 관한 실험적 연구)

  • Park, Byung-Tae;Kwon, Ki-Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.13-20
    • /
    • 2017
  • Unreinforced masonry buildings are vulnerable to lateral forces, such as earthquakes, owing to the nature of the building materials, yet numerous masonry buildings remain in South Korea. Since the majority of the existing masonry buildings were constructed more than 20 years ago, it is necessary to develop economical reinforcement methods for disaster reduction. In this study, external reinforcement of masonry walls using adhesive stiffeners was proposed as a reinforcement method for such age-old masonry buildings. Six specimens were fabricated with different aspect ratios (L/H = 1.0, 1.3, and 2.0) and used in static load tests to verify the reinforcement effect. The experimental results showed that the masonry walls before and after reinforcement were ruptured by rigid body rotation and slip. In addition, the maximum strength, maximum displacement, and dissipated energy of the walls were shown to increase after applying the adhesive stiffeners, thereby verifying the excellent reinforcement effect. Furthermore, an adhesive stiffener design for unreinforced masonry walls was proposed based on the increased shear strength achieved by using conventional glass fibers. The proposed design can be used as a basis for the application of adhesive stiffeners for unreinforced masonry walls.